测绘通报 ›› 2022, Vol. 0 ›› Issue (7): 26-32,99.doi: 10.13474/j.cnki.11-2246.2022.0198

• 学术研究 • 上一篇    下一篇

基于CNN海上钻井平台检测模型的构建及训练算法分析

柳林, 孙毅, 李万武   

  1. 山东科技大学, 山东 青岛 266590
  • 收稿日期:2021-11-16 出版日期:2022-07-25 发布日期:2022-07-28
  • 通讯作者: 李万武。E-mail:liwanwuqd@126.com
  • 作者简介:柳林(1971—),女,博士,副教授,研究方向为移动位置服务、移动终端导航、海洋GIS、智慧城市、空间数据仓库与数据挖掘、3S集成等。E-mail:liulin2009@126.com
  • 基金资助:
    山东省自然科学基金(ZR 2019MD034)

Detection model construction based on CNN for offshore drilling platform and training algorithm analysis

LIU Lin, SUN Yi, LI Wanwu   

  1. Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2021-11-16 Online:2022-07-25 Published:2022-07-28

摘要: 卷积神经网络(CNN)是深度学习(DL)中最具代表性的一种网络结构。合成孔径雷达(SAR)图像具有位置结构关系,CNN模型可以利用图像的位置结构关系,能够更好地提取图像特征,因此更适合采用CNN模型检测海洋目标。本文首先基于CNN框架构建了海上钻井平台检测的DL模型Ocean TDAx,并对模型进行训练和测试。试验结果表明,Ocean TDA9模型精度最高。然后针对Ocean TDA9模型,采用Adam、RMSprop、Stochastic gradient descent (SGD)、Adagrad、Momentum等7种模型训练算法进行试验,比较不同算法的训练损失和精度与训练批次的相关性。最后基于渤海海域的极化SAR数据,对提出的Ocean TDA9模型、已有的CNN模型及VGG模型进行海上钻井平台检测对比。结果表明,构建的Ocean TDA9模型在钻井平台检测中整体性能优良。

关键词: 目标检测, 钻井平台, 卷积神经网络, 模型训练, SAR影像

Abstract: Convolutional neural networks (CNN) is the most representative network structure of deep learning (DL). Synthetic aperture radar (SAR) image itself has the position structure relationship, the characteristics of the CNN model determine that it can use the position structure relationship of the image to extract the features of the image better,so it is more suitable to use the CNN model for marine target detection.The paper based on CNN framework constructs the DL model Ocean TDAx of offshore drilling platform detection, trains and tests the OceanTDAx model through the improved WinR-Adagrad gradient training algorithm, experimental results show that the Oceant TDA9 model is the highest accuracy. For the Ocean TDA9 model, seven model training algorithms, such as adam, RMSprop, Stochastic gradient descent (SGD), Adagrad and Momentum, is used to conduct experiments,and the training loss and accuracy with relevance of training batches of different algorithmsis is compared. Based on the polarized SAR data of the Bohai sea, the proposed Ocean TDA9 model and the existing CNN model and Visual geometry group (VGG) model are used to compare the detection experiments of offshore drilling platforms.The results show that the constructed Ocean TDA9 model is excellent overall performance in drilling platform testing.

Key words: target detection, drilling platform, convolutional neural network, model training, SAR image

中图分类号: