测绘通报 ›› 2023, Vol. 0 ›› Issue (1): 45-51.doi: 10.13474/j.cnki.11-2246.2023.0008

• 学术研究 • 上一篇    下一篇

基于增强生成对抗网络的滑坡影像集超分辨率重建

方留杨1,2,3, 刘天逸1, 赵鑫2,3, 吴昊2,3, 贾志文1, 曾珍2,3   

  1. 1. 昆明理工大学, 云南 昆明 650031;
    2. 云南省交通规划设计研究院有限公司, 云南 昆明 650200;
    3. 云南省数字交通重点实验室, 云南 昆明 650000
  • 收稿日期:2022-05-17 修回日期:2022-10-24 发布日期:2023-02-08
  • 通讯作者: 刘天逸。E-mail:1260999377@qq.com
  • 作者简介:方留杨(1987-),男,博士,高级工程师,主要从事交通灾害防治方面的研究。E-mail:318647315@qq.com
  • 基金资助:
    云南省数字交通重点实验室项目(202205AG070008);云南省交通运输厅2019年科技创新管理咨询研究项目(2019301);交通运输部2021年度交通运输行业重点科技项目清单项目(2021-MS4-105);云南省交通规划设计研究院有限公司科技项目(ZL-2021-03)

Super-resolution reconstruction of landslide image set based on enhanced generation countermeasure network

FANG Liuyang1,2,3, LIU Tianyi1, ZHAO Xin2,3, WU Hao2,3, JIA Zhiwen1, ZENG Zhen2,3   

  1. 1. Kunming University of Science and Technology, Kunming 650031, China;
    2. Broadvision Engineering Consultants, Kunming 650200, China;
    3. Yunnan Key Laboratory of Digital Communications, Kunming 650000, China
  • Received:2022-05-17 Revised:2022-10-24 Published:2023-02-08

摘要: 针对高分遥感影像用于滑坡智能识别缺少高清训练集的问题,在组建高清滑坡训练集过程中,为充分利用低分辨率滑坡影像,本文采用基于增强型生成对抗网络模型(ESRGAN)实现了低分辨率滑坡影像集超分辨率重建。ESRGAN模型在SRGAN模型基础上,通过移除批归一化层、加入多级残差网络与残差缩放系数,提升了生成器的特征提取性能与稳定性,并采用迁移学习方法,基于毕节滑坡影像集与云南南景高速公路滑坡影像集进行试验验证。试验结果表明,基于迁移学习的ESRGAN模型在峰值信噪比(PSNR)与结构相似性(SSIM)方面获得更高得分,超分辨率重建取得更优结果。本文研究结果为获取滑坡高分辨率遥感影像集提供了一种新的技术方法。

关键词: 滑坡影像集, 生成对抗网络, 超分辨率重建, 多级残差网络, 迁移学习

Abstract: To address the problem of the lack of high-resolution training set in the use of high-resolution remote sensing images for landslide intelligent recognition. In the process of forming the high-resolution landslide training set, in order to make full use of the previous low-resolution landslide images, this paper adopts enhanced super-resolution generative adversarial networks(ESRGAN) to achieve super-resolution reconstruction of the low-resolution landslide image set. The ESRGAN model improves the feature extraction performance and stability of the generator by removing the batch normalization layer, adding multi-stage residual network and residual scaling factor based on the SRGAN model, and using the transfer learning method to conduct experimental based on the Bijie landslide image set and Yunnan Nanjing highway landslide image set. The experimental results show that the ESRGAN model based on transfer learning can achieve higher scores in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), and better results in super-resolution reconstruction. The results of this paper can provide a new technical method for acquiring high-resolution remote sensing image sets of landslides.

Key words: landslide image set, adversarial network generation, super-resolution reconstruction, multistage residual network, transfer learning

中图分类号: