测绘通报 ›› 2024, Vol. 0 ›› Issue (3): 173-178.doi: 10.13474/j.cnki.11-2246.2024.0330

• 测绘地理信息技术应用案例 • 上一篇    下一篇

基于改进YOLOv5的无人机影像道路裂缝检测方法

朱伟刚, 汪伦, 陈田, 邹博文   

  1. 长春工程学院勘查与测绘工程学院, 吉林 长春 130021
  • 收稿日期:2023-09-14 发布日期:2024-04-08
  • 作者简介:朱伟刚(1970—),男,硕士,教授,主要研究方向为GNSS测量及其应用。E-mail:519660365@qq.com
  • 基金资助:
    吉林省发改委科研项目(120230094)

UAV image road crack detection method based on improved YOLOv5

ZHU Weigang, WANG Lun, CHEN Tian, ZOU Bowen   

  1. School of Prospecting and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China
  • Received:2023-09-14 Published:2024-04-08

摘要: 道路裂缝的出现对道路使用寿命和人车安全带来明显影响,需及时检测出道路裂缝。针对无人机影像中裂缝目标小、图像背景复杂导致检测精度低等问题,本文以无人机采集裂缝图像作为研究数据,提出了一种改进YOLOv5模型的深度学习道路裂缝检测方法。在YOLOv5模型骨干网络中分别加入CBAM、SimAM、CA注意力机制,提高模型对裂缝的识别能力及检测精度,通过消融试验进行对比分析,同时在YOLOv5模型上融入自适应空间特征融合算法,改善裂缝特征提取能力。研究表明,改进后的YOLOv5网络模型相比于原模型,精度得到明显提高,均值平均精度(mAP)提升20.6%,在保证准确性的同时有效提高了检测精度,可为道路裂缝检测提供新的方法。

关键词: 裂缝检测, YOLOv5, 注意力机制, 自适应空间特征融合

Abstract: The emergence of road cracks has an obvious impact on the road service life and the safety of people and vehicles,so it is necessary to detect road cracks in time.Aiming at the problems of low detection accuracy caused by small crack target and complex image background in UAV image,this paper takes the crack image collected by UAV as research data,and proposes a deep learning road crack detection method based on improved YOLOv5 model.The attention mechanisms of CBAM,SimAM and CA are added to the backbone network of YOLOv5 model to improve the crack recognition ability and detection accuracy of the model.Comparative analysis is carried out through ablation experiments.At the same time,adaptive spatial feature fusion algorithm is incorporated into the YOLOv5 model to improve the ability of crack feature extraction.The research shows that the accuracy of the improved YOLOv5 network model is significantly higher than that of the original model,and the mean average accuracy(mAP) is increased by 20.6%.It not only ensures the accuracy but also effectively improves the detection accuracy,and can provide a new method for road crack detection.

Key words: crack detection, YOLOv5, attention mechanism, adaptive spatial feature fusion

中图分类号: