[1] HUANG Danping,TIAN Ying,YU Shaodong,et al.Inversion prediction of COD in wastewater based on hyperspectral technology[J].Journal of Cleaner Production,2023,385:135681. [2] DUBBER D,GRAY N F.Replacement of chemical oxygen demand(COD)with total organic carbon(TOC)for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste[J].Journal of Environmental Science and Health Part A,Toxic/Hazardous Substances & Environmental Engineering,2010,45(12):1595-1600. [3] CAI Xiaolan,LI Yunmei,LEI Shaohua,et al.A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters:a case study in inland lake waters in Eastern China[J].Science of the Total Environment,2023,856:158869. [4] YANG Haibo,DU Yao,ZHAO Hongling,et al.Water quality chl-a inversion based on spatio-temporal fusion and convolutional neural network[J].Remote Sensing,2022,14(5):1267. [5] MOHSEN A,ELSHEMY M,ZEIDAN B.Water quality monitoring of Lake Burullus (Egypt) using Landsat satellite imageries[J].Environmental Science and Pollution Research International,2021,28(13):15687-15700. [6] QIU Y,ZHANG H,TONG X,et al.Water quality monitoring of water resources conservation area in city of Shanghai based on remote sensing[C]//Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing.Denver:IEEE,2006:3434-3437. [7] 王凤霞,夏卓异,郭雨辉,等.基于GEE的中国南海水质反演与富营养化评价[J].中国环境科学,2022,42(2):826-833. [8] 卜博,张方方,李俊生,等.基于GF6-WFV数据的中国东部典型湖库叶绿素a浓度反演[J].遥感技术与应用,2024,39(1):170-184. [9] 张方方,李俊生,王超,等.高分一号卫星浑浊水体水质参数软分类反演[J].遥感学报,2023,27(3):769-779. [10] LU Qikai,SI Wei,WEI Lifei,et al.Retrieval of water quality from UAV-borne hyperspectral imagery:a comparative study of machine learning algorithms[J].Remote Sensing,2021,13(19):3928. [11] SONG Wei,YINGLAN A,WANG Yuntao,et al.Study on remote sensing inversion and temporal-spatial variation of Hulun lake water quality based on machine learning[J].Journal of Contaminant Hydrology,2024,260:104282. [12] XIAO Yi,GUO Yahui,YIN Guodong,et al.UAV multispectral image-based urban river water quality monitoring using stacked ensemble machine learning algorithms:a case study of the Zhanghe River,China[J].Remote Sensing,2022,14(14):3272. [13] NAJAH AHMED A,BINTI OTHMAN F,ABDULMOHSIN AFAN H,et al.Machine learning methods for better water quality prediction[J].Journal of Hydrology,2019,578:124084. [14] HAFEEZ S,WONG M S,HO H C,et al.Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters:a case study of Hong Kong[J].Remote Sensing,2019,11(6):617. [15] CAO Jiaju,WEN Xingping,LUO Dayou,et al.Study on water quality inversion model of Dianchi Lake based on Landsat 8 data[J].Journal of Spectroscopy,2022,2022:3341713. [16] SAGAN V,PETERSON K T,MAIMAITIJIANG M,et al.Monitoring inland water quality using remote sensing:potential and limitations of spectral indices,bio-optical simulations,machine learning,and cloud computing[J].Earth-Science Reviews,2020,205:103187. [17] NAZEER M,ILORI C O,BILAL M,et al.Evaluation of atmospheric correction methods for low to high resolutions satellite remote sensing data[J].Atmospheric Research,2021,249:105308. [18] LOUIS J,DEBAECKER V,PFLUG B,et al.Sentinel-2 Sen2Cor:L2A processor for users[C]//Proceedings of 2016 Living Planet Symposium.Prague:[s.n.],2016. [19] GAO Bocai.NDWI:a normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996,58(3):257-266. [20] TANG J W,TIAN G L,WANG X Y,et al.The methods of water spectra measurement and analysis I:above-water method[J].Journal of Remote Sensing,2004,8(1):37-44. [21] CHEN Tianqi,GUESTRIN C,CHEN Tianqi,et al.XGBoost[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco:ACM Press,2016:785-794. [22] OSTROUMOVA L,GUSEV G,VOROBEV A,et al.CatBoost:unbiased boosting with categorical features[EB/OL].[2024-05-30].https://arxiv.org/abs/1706.09516v5. [23] CHEN Botao,MU Xi,CHEN Peng,et al.Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data[J].Ecological Indicators,2021,133:108434. [24] 陈点点,陈芸芝,冯险峰,等.基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J].地球信息科学学报,2022,24(4):780-791. [25] SU Hua,LU Xuemei,CHEN Zuoqi,et al.Estimating coastal chlorophyll-a concentration from time-series OLCI data based on machine learning[J].Remote Sensing,2021,13(4):576. [26] YANG Zhiming,REITER M,MUNYEI N.Estimation of chlorophyll-a concentrations in diverse water bodies using ratio-based NIR/Red indices[J].Remote Sensing Applications:Society and Environment,2017,6:52-58. [27] MISHRA S,MISHRA D R.Normalized difference chlorophyll index:a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters[J].Remote Sensing of Environment,2012,117:394-406. [28] ELSAYED S,GAD M,FAROUK M,et al.Using optimized two and three-band spectral indices and multivariate models to assess some water quality indicators of qaroun lake in Egypt[J].Sustainability,2021,13(18):10408. [29] ESCOTO J E,BLANCO A C,ARGAMOSA R J,et al.Pasig river water quality estimation using an empirical ordinary least squares regression model of Sentinel-2 satellite images[J].ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2021,46W6:161-168. |