测绘通报 ›› 2025, Vol. 0 ›› Issue (4): 75-81.doi: 10.13474/j.cnki.11-2246.2025.0413

• 学术研究 • 上一篇    

基于Sentinel-2的福建典型沿海养殖区化学需氧量反演

陈保锋1,2, 陈芸芝1,2, 陈红梅3   

  1. 1. 福州大学数字中国(福建)研究院, 福建 福州 350108;
    2. 空间数据挖掘与信息共享教育部重点实验室, 福建 福州 350108;
    3. 福建省水产研究所, 福建 厦门 361000
  • 收稿日期:2024-06-17 发布日期:2025-04-28
  • 通讯作者: 陈芸芝。E-mail:chenyunzhi@fzu.edu.cn
  • 作者简介:陈保锋(1999—),男,硕士生,研究方向为水环境遥感。E-mail:1161409339@qq.com
  • 基金资助:
    福建省省属公益类科研院所基本科研专项(2023R1012005); 福建省海洋服务与渔业高质量发展专项资金(FJHY-YYKJ-2024-1-14);福建省自然科学基金(2022J01111)

Chemical oxygen demand inversion in typical coastal breeding areas in Fujian based on Sentinel-2 data

CHEN Baofeng1,2, CHEN Yunzhi1,2, CHEN Hongmei3   

  1. 1. Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350108, China;
    2. Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350108, China;
    3. Fisheries Research of Fujian, Xiamen 361000, China
  • Received:2024-06-17 Published:2025-04-28

摘要: 化学需氧量(COD)是评价水环境生态与富营养化水平的重要指标,及时掌握沿海地区水域COD浓度,对于海洋环境保护具有重要意义。本文首先基于野外实测数据和Sentinel-2 MSI卫星遥感影像数据,筛选出用于反演COD的最佳波段组合;然后采用基于统计分析的经验模型与机器学习模型进行反演,以确定适用于福建省诏安湾与东山湾的COD最优反演模型;最后对福建省诏安湾与东山湾地区近年来水质状况进行时空特征分析。结果表明,波段倒数差BRD组合构建的COD指数回归模型是诏安湾和东山湾的最佳反演模型,决定系数 R2 达0.82,均方误差MSE为1.85%,平均绝对百分比MAPE为11.55%。根据研究反演结果,2017—2022年研究区COD浓度变化较小,高值区集中于近岸区域与河流入海口;2023年COD浓度有所下降,这与2022—2023年当地生态保护措施导致水产养殖密度发生变化有关。

关键词: 化学需氧量, 半经验模型, 机器学习, Sentinel-2

Abstract: Chemical oxygen demand(COD) is an important indicator for evaluating the ecological and eutrophication levels of the water environment. Timely monitoring of COD concentrations in coastal waters is significant for marine environmental protection. This study utilizes field-measured data and Sentinel-2 MSI satellite remote sensing image data to identify the best band combination for inverting COD. It applies an empirical model based on statistical analysis and a machine learning model for inversion. The optimal inversion model for COD, applicable to Zhao'an Bay and Dongshan Bay in Fujian province, is determined. The spatiotemporal characteristics of water quality in these areas are also analyzed. The results show that the COD index regression model, constructed using the band reciprocal difference (BRD) combination, is the best inversion model for Zhao'an Bay and Dongshan Bay. This model achieves a determination coefficient R2 of 0.82, a mean square error (MSE) of 1.85%, and a mean absolute percentage error (MAPE) of 11.55%. The inversion results indicate that the COD concentration in the study area remains relatively stable from 2017 to 2022, with high-value areas concentrated in nearshore regions and river estuaries. The COD concentration decreases in 2023, which is attributed to changes in aquaculture density resulting from local ecological protection measures implemented between 2022 and 2023.

Key words: COD, semi-empirical model, machine learning, Sentinel-2

中图分类号: