[1] 史培军.中国自然灾害风险地图集[M].北京:科学出版社,2011. [2] 应急管理部网站.国家防灾减灾救灾委员会办公室应急管理部发布2024年7月全国自然灾害情况[J].中国减灾,2024(16):6-7. [3] 章可怡,石咏,郭海湘,等.基于卡车-无人机协同的山区自然灾害应急物资调度优化决策研究[J/OL].中国管理科学.[2024-07-30].https://doi.org/10.16381/j.cnki.issn1003-207x.2023.1278. [4] 苏林雪.汶川地震前后四川省主要地质灾害时空发育规律研究[D].焦作:河南理工大学,2021. [5] 李成范,孟令奎,刘学锋.基于深度学习的高分遥感图像建筑物识别[J].应用科学学报,2024,42(3):375-387. [6] 张艳.高分辨率遥感影像建筑物检测及倒塌建筑物识别方法研究[D].南京:南京信息工程大学,2022. [7] YU Bailang,LIU Hongxing,WU Jianping,et al.Automated derivation of urban building density information using airborne LiDAR data and object-based method[J].Landscape and Urban Planning,2010,98(3/4): 210-219. [8] GUO Li,CHEHATA N,MALLET C,et al.Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(1): 56-66. [9] HUANG Xin,ZHANG Liangpei.An SVM ensemble approach combining spectral,structural,and semantic features for the classification of high-resolution remotely sensed imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(1): 257-272. [10] WANG C,SHEN Y,SHEN Y,et al.Building extraction from high-resolution remote sensing images by adaptive morphological attribute profile under object boundary constraint[J].Sensors (Basel),2019,19(17): E3737. [11] 汪泉.基于卷积神经网络的机载高光谱影像针叶树种分类研究[D].哈尔滨:东北林业大学,2022. [12] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6): 84-90. [13] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on Learning Representations.[S.l.]:ICLR,2015. [14] SZEGEDY C,LIU Wei,JIA Yangqing,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2015. [15] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas: IEEE,2016: 770-778. [16] ALIDOOST F,AREFI H.A CNN-based approach for automatic building detection and recognition of roof types using a single aerial image[J].Journal of Photogrammetry,Remote Sensing and Geoinformation Science,2018,86(5): 235-248. [17] 刘媛.高分辨率遥感影像建筑物屋顶识别方法研究[D].北京:北京建筑大学,2021. [18] 左俊皓,赵聪,朱晓龙,等.Faster-RCNN和Level-Set结合的高分遥感影像建筑物提取[J].液晶与显示,2019,34(4):439. [19] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once: unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016: 779-788. [20] 蒯宇.基于深度学习的无人机遥感植被识别方法研究[D].合肥:安徽大学,2022. [21] 奚祥书,夏凯,杨垠晖,等.结合多光谱影像降维与深度学习的城市单木树冠检测[J].遥感学报,2022,26(4):711-721. [22] 朱伟东,何月顺,陈杰,等.基于改进YOLOv5的海洋生物检测算法[J].计算机与数字工程,2022,50(8):1631-1636. [23] 王梦园.基于深度学习的遥感图像目标检测技术研究[D].天津:天津大学,2022. [24] ZHANG Zhi,HE Tong,ZHANG Hang,et al.Bag of freebies for training object detection neural networks[EB/OL].[2024-10-13].http://doi.org/10.48550/arxiv.1902.04103. [25] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553): 436-444. [26] 吴志高,陈明.基于改进YOLO v7的微藻轻量级检测方法[J].大连海洋大学学报,2023,38(1):129-139. [27] 苏鹏创.大地背景弱小目标识别技术研究[D].西安:西安工业大学,2023. [28] 候瑞环,杨喜旺,王智超,等.一种基于YOLOv4-TIA的林业害虫实时检测方法[J].计算机工程,2022,48(4):255-261. [29] 马永康,刘华,凌成星,等.基于改进YOLOv5的红树林单木目标检测研究[J].激光与光电子学进展,2022,59(18):436-446. |