测绘通报 ›› 2025, Vol. 0 ›› Issue (6): 109-114.doi: 10.13474/j.cnki.11-2246.2025.0619

• 学术研究 • 上一篇    

耦合多层次格网特征的轨迹数据提取路网方法

张云菲, 钟天宇   

  1. 长沙理工大学交通运输工程学院, 湖南 长沙 410114
  • 收稿日期:2024-11-08 发布日期:2025-07-04
  • 通讯作者: 钟天宇。E-mail:zhongtianyu2000@163.com
  • 作者简介:张云菲(1987—),女,博士,教授,主要研究方向为交通时空智能信息服务。E-mail:zhang.yunfei@csust.edu.cn
  • 基金资助:
    国家自然科学基金(42371474;41971421);湖南省教育科学研究项目(23A0243);湖南省自然科学基金(2022JJ30590);湖南省研究生科研创新项目(CX20230861)

The road network method of trajectory data extraction coupled with multi-level grid features

ZHANG Yunfei, ZHONG Tianyu   

  1. School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
  • Received:2024-11-08 Published:2025-07-04

摘要: 目前,路网的提取与更新已是影响城市建设发展的关键因素之一,同时,随着无人驾驶技术的不断发展,构建高精度路网是众多学者重点研究内容之一。现有的基于轨迹数据提取路网方法对于格网特征挖掘语义信息较少,因此,本文提出了一种耦合多层次格网特征的轨迹数据提取路网方法。首先,对原始轨迹数据进行预处理,基于格网进行轨迹数据的多层次格网特征计算,包括轨迹相似性、格网轨迹点密度等;然后,基于多层次格网特征利用随机森林模型进行特征训练,实现关键格网的分类识别;最后,利用关键格网基于形态学方法提取路网。本文使用步行轨迹数据进行模型训练,利用车辆轨迹数据进行了模型的迁移验证。试验结果表明,本文方法相较于其他路网的提取方法,有更好的表现。

关键词: 路网提取, 轨迹数据, 格网, 形态学, 随机森林

Abstract: Currently, the extraction and updating of road network has been one of the key factors affecting urban construction and development. At the same time, with the continuous development of driverless technology, the construction of high-precision road network is one of the key research contents of many scholars. Existing road network extraction methods based on track data have little semantic information for grid feature mining. Therefore, this paper proposes a road network extraction method of track data coupled with multi-level grid features. Firstly, the original track data is preprocessed, and multi-level grid features of the track data are calculated based on grid, including track similarity, grid track point density, etc. Then,based on multi-level grid features,the random forest model is used for feature training,and the key grid is classified and recognized. Finally,the key grid is extracted based on morphology. In this paper,the walking track data is used for model training,and the vehicle track data is used for model migration verification.The experimental results show that the proposed method has better performance than other road network extraction methods.

Key words: road extraction, trajectory data, grid, morphology, random forest

中图分类号: