测绘通报 ›› 2025, Vol. 0 ›› Issue (5): 1-7.doi: 10.13474/j.cnki.11-2246.2025.0501

• 生态全要素监测与分析 •    

基于多源影像数据与Otsu-RF方法的太湖蓝藻水华识别及监测

郑超, 童旭东, 祝善友, 张丽娟, 殷凌锋, 林佳余   

  1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044
  • 收稿日期:2024-09-18 发布日期:2025-06-05
  • 通讯作者: 童旭东。E-mail:003445@nuist.edu.cn
  • 作者简介:郑超(2000—),男,硕士生,主要研究方向为水质遥感。E-mail:1938533712@qq.com
  • 基金资助:
    高分辨率对地观测系统重大专项(30-Y60B01-9003-22/23)

Identification and monitoring of cyanobacterial blooms in Taihu Lake based on multi-source image data and Otsu-RF algorithm

ZHENG Chao, TONG Xudong, ZHU Shanyou, ZHANG Lijuan, YIN Lingfeng, LIN Jiayu   

  1. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2024-09-18 Published:2025-06-05

摘要: 针对单一传感器及单一蓝藻提取方法用于太湖蓝藻水华长时序监测的局限性,本文基于2014—2023年高分一号(GF-1)与Landsat 8多源影像数据,采用归一化植被指数(NDVI)方法、随机森林(RF)方法、基于最大类间方差确定样本(大津法)的随机森林(Otsu-RF)方法提取太湖蓝藻,通过对比分析确定蓝藻最优提取方法,揭示近10年太湖蓝藻水华的时空变化特征。结果表明:①Otsu-RF方法在不同影像下提取蓝藻水华的精度最高,且能够更有效地提取零星分布的蓝藻;②与GF-1图像相比,Landsat 8融合影像上的蓝藻像元纹理更加清晰,藻华提取结果更为精确;③2014—2023年太湖夏、秋季蓝藻水华爆发强度较高,春冬季较弱,其中2017、2020年太湖藻华爆发尤为严重,全域年平均蓝藻面积都超过了300 km2;④太湖蓝藻水华春、夏、秋季多爆发在竺山湖湾、梅梁湖湾、西部湖区沿岸区域,冬季多发生在南部湖区沿岸区域。

关键词: 太湖, 蓝藻水华, 多源影像, 随机森林, 最大类间方差, 时空变化

Abstract: Limitations of single sensor and single cyanobacterial extraction method for long time series monitoring of cyanobacterial blooms in Taihu Lake, based on the multi-source image data of GF-1 and Landsat 8 from 2014 to 2023, the normalised vegetation index (NDVI) method, random forest (RF) method and random forest based on maximum interclass variance (Otsu-RF) method are used to extract cyanobacteria from Taihu Lake.Determination of the optimal cyanobacterial extraction method by comparative analysis the spatial and temporal characteristics of cyanobacterial blooms in Taihu Lake over the past ten years are revealed. The results show that:① The Otsu-RF method has the highest accuracy in extracting cyanobacterial blooms in different images, and it can better extract the sporadically distributed cyanobacteria; ② Compared with the GF-1 images, the texture of cyanobacterial pixels on the Landsat 8 fusion images is clearer, and the results of cyanobacterial bloom extraction are more accurate; ③ The intensity of cyanobacterial bloom outbreaks was higher in summer and fall and weaker in spring and winter in Taihu Lake from 2014 to 2023, of which the outbreaks were particularly severe in 2017 and 2020, with the annual average area of cyanobacteria in the whole area exceeding 300 km2;④ The cyanobacterial blooms of Taihu Lake in spring, summer, and fall were mostly found in the Zhushan Lake, Meiliang Lake, and the shore of the western Taihu Lake areas, and they occurred more often in the shore of the the southern Taihu Lake areas in winter.

Key words: Taihu Lake, cyanobacterial bloom, multi-source image, random forest (RF), Otsu, spatio temporal variation

中图分类号: