测绘通报 ›› 2025, Vol. 0 ›› Issue (8): 128-136.doi: 10.13474/j.cnki.11-2246.2025.0821

• 技术交流 • 上一篇    下一篇

基于图像增强和改进RT-DETR的水下垃圾检测算法

李超1,2, 刘清屹1, 张佳伟3, 石勇1, 杨敏3   

  1. 1. 重庆市测绘科学技术研究院, 重庆 401120;
    2. 自然资源部智能城市时空信息与装备工程技术创新中心, 重庆 401120;
    3. 重庆交通大学机电与车辆工程学院, 重庆 400074
  • 收稿日期:2025-01-03 出版日期:2025-08-25 发布日期:2025-09-02
  • 作者简介:李超(1985—),男,硕士,正高级工程师,主要研究方向为自动化监测。E-mail:lichao@cqkcy.com
  • 基金资助:
    重庆市技术创新与应用发展专项面上项目(2023TIAD-GPX0097)

Underwater trash detection algorithm based on image enhancement and improved RT-DETR

LI Chao1,2, LIU Qingyi1, ZHANG Jiawei3, SHI Yong1, YANG Min3   

  1. 1. Chongqing Institute of Surveying and Mapping Science and Technology, Chongqing 401120, China;
    2. Intelligent City Spatio-temporal Information and Equipment Engineering Technology Innovation Center of the Ministry of Natural Resources, Chongqing 401120, China;
    3. Chongqing Jiaotong University Electromechanical Vehicles and Engineering College, Chongqing 400074, China
  • Received:2025-01-03 Online:2025-08-25 Published:2025-09-02

摘要: 随着海洋环境污染问题的日益突出,水下垃圾的快速检测与清理尤为迫切。针对水下垃圾图像质量差、受光照影响严重、重叠和形状各异等导致检测效果差的问题,本文提出了一种基于改进RT-DETR的水下垃圾检测算法。针对图像存在色偏、对比度低等问题,设计了一种融合对比度增强和自适应色彩补偿的增强算法对图像进行预处理;针对移动设备模型轻量化的需求,引入FasterNet Block模块改进主干网络,减少模型参数量;针对水下环境光线弱的问题,采用HS-FPN高级筛选特征融合金字塔融合策略,解决特征损失严重和区分度低的问题;针对图像小目标居多,采用一种GELAN广义高效层聚合网络,提高模型的表征能力;针对空间位置造成垃圾尺寸差异大的问题,引入Inner-IoU与ShapeIoU结合的Inner-ShapeIoU损失函数,提高目标检测的稳健性。试验结果表明,本文方法有效解决了图像色偏和对比度低的问题,相较原模型检测精度提高3.9个百分点,参数量减少26.3个百分点,水下垃圾检测性能更加优越。

关键词: 水下垃圾检测, 深度学习, 图像增强, RT-DETR

Abstract: With the increasingly prominent problem of marine environmental pollution,rapid detection and cleaning of underwater garbage are particularly urgent.A new underwater garbage detection algorithm based on improved RT-DETR is proposed to address the issues of poor image quality,severe exposure to light,overlapping and varying shapes that lead to poor detection performance.Aiming at the problems of color cast and low contrast in images,an enhancement algorithm combining contrast enhancement and adaptive color compensation is designed for image preprocessing.In response to the demand for lightweight mobile device models,the FasterNet Block module is introduced to improve the backbone network and reduce the number of model parameters.To address the issue of weak lighting in underwater environments,the HS-FPN advanced filtering feature fusion pyramid fusion strategy is adopted to solve the problems of severe feature loss and low discrimination.For small targets in images,a GELAN generalized efficient layer aggregation network is adopted to improve the representation ability of the model.To address the issue of large differences in garbage size caused by spatial location,an Inner-ShapeIoU loss function combining Inner-IoU and ShapeIoU is introduced to improve the robustness of object detection.The experimental results show that the proposed method effectively solves the problems of image color cast and low contrast.Compared with the original model,the detection accuracy has been improved by 3.9 percent,and the number of parameters has been reduced by 26.3 percent.The underwater garbage detection performance is superior.

Key words: underwater trash detection, deep learning, image enhancement, RT-DETR

中图分类号: