近年来,我国大部分地区屡遭洪涝与干旱两种自然灾害侵袭,对重洪涝干旱区域进行空间插值具有重要的意义。针对传统地理加权回归(GWR)模型建模过程中模型识别和参数估计易受观测值异常点影响的问题,本文提出了一种基于吉布斯采样的贝叶斯地理加权回归(GBGWR)方法。运用基于吉布斯采样的马尔可夫链蒙特卡罗贝叶斯方法,估计地理加权回归模型参数,通过平滑函数降低观测值中异常点位数据,最后对湖南省1985-2015年35个观测站点的降水观测数据进行了空间分布模拟。试验结果表明,本文提出的方法相较于GWR模型性能提高了19.8%,相较于BGWR模型性能提高了8.2%,该方法可以有效降低异常值和"弱数据"对回归结果的影响,能够更加真实地模拟湖南省降水量的空间分布。