[1] ZHANG Yongping,MI Zhifu.Environmental benefits of bike sharing:a big data-based analysis[J].Applied Energy,2018,220:296-301. [2] 郭鹏,林祥枝,黄艺,等.共享单车:互联网技术与公共服务中的协同治理[J].公共管理学报,2017,14(3):1-10. [3] WESTLAND J C,MOU Jian,YIN Dafei.Demand cycles and market segmentation in bicycle sharing[J].Information Processing & Management,2019,56(4):1592-1604. [4] 刘恒孜,贺玉龙,宋太龙,等.共享单车需求预测及调度优化[J].科学技术与工程,2021,21(35):15247-15254. [5] 姜晓,白璐斌,楼夏寅,等.基于多尺度时空聚类的共享单车潮汐特征挖掘与需求预测研究[J].地球信息科学学报,2022,24(6):1047-1060. [6] 孙启鹏,曾开邦,张锴琦,等.北京市共享单车出行的时空规律与需求预测研究[J].交通运输系统工程与信息,2022,22(1):332-338. [7] CAMPBELL A A,CHERRY C R,RYERSON M S,et al.Factors influencing the choice of shared bicycles and shared electric bikes in Beijing[J].Transportation Research Part C:Emerging Technologies,2016,67:399-414. [8] PAN Yan,ZHENG R C,ZHANG Jiaxi,et al.Predicting bike sharing demand using recurrent neural networks[J].Procedia Computer Science,2019,147:562-566. [9] SOHRABI S,PALETI R,BALAN L,et al.Real-time prediction of public bike sharing system demand using generalized extreme value count model[J].Transportation Research Part A:Policy and Practice,2020,133:325-336. [10] 焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测:基于机器学习模型的比较分析[J].商业经济与管理,2018(8):16-25. [11] SINGHVI D,SINGHVI S,FRAZIER P,et al.Predicting bike usage for New York city's bike sharing system[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.Austin:AAAI Workshop Computational Sustainability,2015:110-114. [12] ALMANNAA M H,ELHENAWY M,RAKHA H A.Dynamic linear models to predict bike availability in a bike sharing system[J].International Journal of Sustainable Transportation,2020,14(3):232-242. [13] XU Chengcheng,JI Junyi,LIU Pan.The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets[J].Transportation Research Part C:Emerging Technologies,2018,95:47-60. [14] YADAV A,VISHWAKARMA D K.Sentiment analysis using deep learning architectures:a review[J].Artificial Intelligence Review,2020,53(6):4335-4385. [15] FENG Youli,WANG Shanshan.A forecast for bicycle rental demand based on random forests and multiple linear regression[C]//Proceedings of 2017 IEEE/ACIS the 16th International Conference on Computer and Information Science.Wuhan:IEEE,2017:101-105. [16] 种颖珊,韩晓明.基于随机森林与时空聚类的共享单车站点需求量预测[J].科学技术与工程,2018,18(32):89-94. [17] 彭华,王文超,朱永利,等.基于LSTM神经网络的风电场集电线路单相接地智能测距[J].电力系统保护与控制,2021,49(16):60-66. [18] 钟智鹏,王海龙,苏贵斌,等.融合CNN-BiLSTM和自注意力模型的音乐情感识别[J].计算机工程与应用,2023,59(3):94-103. [19] 任福,侯宛玥.面向机器阅读的地图名称注记类别识别方法[J].武汉大学学报(信息科学版),2020,45(2):273-280. [20] JIN K H,MCCANN M T,FROUSTEY E,et al.Deep convolutional neural network for inverse problems in imaging[J].IEEE Transactions on Image Processing,2017,26(9):4509-4522. [21] 党建武,从筱卿.基于CNN和GRU的混合股指预测模型研究[J].计算机工程与应用,2021,57(16):167-174. [22] 胡浩,闫伟,李泓明.基于组合预测方法的城市道路短时交通流预测[J].工业工程与管理,2019,24(3):107-115. [23] 王婧娟,陈庆奎.一种时空注意力网络的交通预测模型[J].小型微型计算机系统,2021,42(2):303-307. [24] 谢军,吴伟,杨晓光.用于短时交通流预测的多项式分布滞后模型[J].同济大学学报(自然科学版),2011,39(9):1297-1302. [25] 许淼,刘宏飞,初凯.基于AM-LSTM模型的共享单车时空需求预测[J].湖南大学学报(自然科学版),2020,47(12):77-85. [26] 任建吉,位慧慧,邹卓霖,等.基于CNN-BiLSTM-Attention的超短期电力负荷预测[J].电力系统保护与控制,2022,50(8):108-116. |