[1] LIU Fanfan,XU Guoai,YANG Yixian,et al. Novel approach to pavement cracking automatic detection based on segment extending[C]//Proceedings of International Symposium on Knowledge Acquisition and Modeling. Wuhan:IEEE,2008:610-614. [2] OLIVEIRA H,CORREIA P L. Automatic Road crack detection and characterization[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(1):155-168. [3] 张娟,沙爱民,孙朝云,等. 基于相位编组法的路面裂缝自动识别[J]. 中国公路学报,2008,21(2):39-42. [4] NGUYEN T S,AVILA M,BEGOT S. Automatic detection and classification of defect on road pavement using anisotropy measure[C]//Proceedings of the 17th European Signal Processing Conference.[S.l.]:IEEE,2009:617-621. [5] LATTANZI D,MILLER G R. Robust automated concrete damage detection algorithms for field applications[J]. Journal of Computing in Civil Engineering,2014,28(2):253-262. [6] 何小飞,邹峥嵘,陶超,等. 联合显著性和多层卷积神经网络的高分影像场景分类[J]. 测绘学报,2016,45(9):1073-1080. [7] 许夙晖,慕晓冬,赵鹏,等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报,2016,45(7):834-840. [8] 温作林. 基于深度学习的混凝土裂缝识别[D]. 杭州:浙江大学,2019. [9] 罗晖,贾晨,李健. 基于改进YOLOv4的公路路面病害检测算法[J]. 激光与光电子学进展,2021,58(14):336-344. [10] BOCHKOVSKIY A,WANG C Y,LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL]. 2020-04-23[2021-01-03].https://arxiv.org/abs/2004.10934v1. [11] SONG Weidong,JIA Guohui,ZHU Hong,et al. Automated pavement crack damage detection using deep multiscale convolutional features[J]. Journal of Advanced Transportation,2020,2020:6412562. [12] YU Bin,MENG Xiangcheng,YU Qiannan. Automated pixel-wise pavement crack detection by classification-segmentation networks[J]. Journal of Transportation Engineering,Part B:Pavements,2021,147(2):04021005. [13] HE Kaiming,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Venice:IEEE,2017:2980-2988. [14] GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Santiago:IEEE,2015:1440-1448. [15] REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [16] BUTERA L,FERRANTE A,JERMINI M,et al. Precise agriculture:effective deep learning strategies to detect pest insects[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(2):246-258. [17] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI:IEEE,2017:936-944. [18] 林成创,赵淦森,尹爱华,等. AS-PANet:改进路径增强网络的重叠染色体实例分割[J]. 中国图象图形学报,2020,25(10):2271-2280. [19] SU Lihui,WANG Yaowei,TIAN Yonghong. R-SiamNet:ROI-align pooling baesd Siamese network for object tracking[C]//Proceedings of IEEE Conference on Multimedia Information Processing and Retrieval. Shenzhen:IEEE,2020:19-24. [20] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of Computer Vision-ECCV.Cham:Springer,2018. [21] YU F,KOLTUN V,FUNKHOUSER T. Dilated residual networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,HI:IEEE,2017:636-644. [22] LIN T Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects in context[C]//Proceedings of Computer Vision-ECCV. Cham:Springer,2014:740-755. |