[1] 范德虎,谢谟文. 城乡规划违法建设的法律界定及其要素分析[J]. 规划师,2012,28(12): 61-65. [2] 郐艳丽,刘春生,刘铁军,等. 城乡规划违法违规行为研究[J]. 城市规划,2013,37(3): 43-48. [3] 马红,黄磊,欧阳晖. 面向违法建筑巡查识别的技术研究与实践[J]. 测绘通报,2018(S1): 47-51. [4] 林晓萍. 基于国产卫星影像的自然资源动态监测[J]. 测绘通报,2020(11): 28-32. [5] 李德仁,王密,胡芬. 利用我国高分辨率卫星影像监测北京市违章建筑[J]. 科学通报,2009,54(3): 305-311. [6] 陈鹏,吕鹏远,宋蜜,等. 高空间分辨率遥感影像下的违法用地变化检测[J]. 测绘通报,2018(4): 108-111. [7] 孙久虎. 一种云端一体化的土地督察遥感监测方法[J]. 测绘通报,2020(3): 129-133. [8] 曾凡洋,李长辉,宋杨,等. 微型无人机在违法用地与违法建设动态监测中的应用[J]. 测绘通报,2017(S1): 152-154. [9] 徐海滨,邢汉发,王召海,等. 基于无人机影像的疑似违法用地精准监测[J]. 西安理工大学学报,2021,37(4): 536-543. [10] 蔡柔丹.多源数据协同的违法建筑数据管理与应用[J].测绘通报,2022(S2):286-290. [11] 武花,张新长,孙颖,等. 融合多特征改进型PSPNet模型应用于复杂场景下的建筑物提取[J]. 测绘通报,2021(6): 21-27. [12] 何代毅,施文灶,林志斌,等. 基于改进Mask-RCNN的遥感影像建筑物提取[J]. 计算机系统应用,2020,29(9): 156-163. [13] CHEN Meng,WU Jianjun,LIU Leizhen,et al.DR-Net:an improved network for building extraction from high resolution remote sensing image[J].Remote Sensing,2021,13(2):294. [14] LIN Jingbo,JING Weipeng,SONG Houbing,et al. ESFNet: efficient network for building extraction from high-resolution aerial images[J].IEEE Access,2019(7):54285-54294. [15] JIN Y,XU W,ZHANG C,et al.Boundary-aware refined network for automatic building extraction in very high-resolution urban aerial images[J].Remote Sensing,2021,13(4):692. [16] LAFFERTY J D,MCCALLUM A,PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning.[S.l.]:ACM,2001:282-289. [17] RONNEBERGER O,PHILIPP F,THOMAS B. U-net:convolutional networks for biomedical image segmentation[C]//Proceeding of 2015 International Conference on Medical Image Computing and Computer-assisted Intervention.[S.l.]:Springer,2015:234-241. [18] 唐璎,刘正军,杨懿,等. 基于特征增强和ELU的神经网络建筑物提取研究[J]. 地球信息科学学报,2021,23(4): 692-709. [19] GIRRES J,TOUYA G. Quality assessment of the french OpenStreetMap dataset[J]. Transactions in GIS,2010,14(4):435-459. |