[1] 中国卫星导航系统管理办公室. 北斗卫星导航系统发展报告2.2[R]. 北京: [s.n.], 2013. [2] Global Positioning System Directorate. IS-GPS-200G Global Positioning System Directorate Systems Engineering & Integration Interface Specification [S]. USA: [s.n.], 2012. [3] 陈俊勇. GPS技术进展及其现代化[J]. 大地测量与地球动力学, 2010, 30(3): 1-4. [4] HABRICH H. Geodetic Applications of the Global Navigation Satellite System (GLONASS) and of GLONASS/GPS Combination[D]. Bern: University of Bern, 1999. [5] Russian Institute of Space Device Engineering. GLONASS Interface Control Document[S]. Moscow: Russian Institute of Space Device Engineering, 2008. [6] European UNION. European GNSS (Galileo) Open Service Signal in Space Interface Control Document[S]. Europe, 2010. [7] LIN G S, COLE T R. Dynamic Model for Global Positioning System Block ⅡR Space Vehicle[J]. Journal of Spacecraft and Rockets, 1997, 34(3): 354-359. [8] SPRINGER T A, BEUTLER G, ROTHACHER M. A New Solar Radiation Pressure Model for GPS Satellites[J]. GPS Solutions, 1999, 2(3): 50-62. [9] SPRINGER T A, BEUTLER G, ROTHACHER M. Improving the Orbit Estimates of GPS Satellites[J]. Journal of Geodesy, 1999, 73(3): 147-157. [10] WARREN D L M, RAQUET J F. Broadcast vs. Precise GPS Ephemerides: A Historical Perspective[J]. GPS Solutions, 2003, 7(3): 151-156. [11] INSIDEGNSS. About GLONASS[EB/OL]. [2014-02-10]. http://www.insidegnss.com. [12] GIRAUD J, BORREL F V, MASSIMO C. Latest Achievements in GIOVE Signal and Sensor Station Experimentations[C]//Proceedings of ION GNSS 2009. Savannah, GA, USA: [s.n.], 2009: 3025-3036. [13] SCHÖNEMANN E. SPRINGER TOTTEN M, et al. GIOVE-A Precise Orbit Determination from Microwave and Satellite Laser Ranging Data——First Perspectives for the Galileo Constellation and Its Scientific Use[C]//Proceedings of the First Colloquium on Scientific and Fundamental Aspects of the Galileo Program. Toulouse, France: [s.n.], 2007: 1-7. [14] CARCÍAÁ M, PÍRIZ R, FERNáNDEZ V, et al. GIOVE Orbit and Clock Determination and Prediction: Experimentation Results[C]//Proceedings of the European Navigation Conference-Global Navigation Satellite Systems. Toulouse, France: [s.n.], 2009. [15] KIRCHNER M, SCHMIDT R, VILZMANN J. Results of GIOVE Data Processing to Allow Evaluation of Principal System Performance Drivers[C]//Proceedings of the European Navigation Conference-Global Navigation Satellite Systems. Naples, Italy: [s.n.], 2009. [16] BEUTLER G, MOORE A W, MUELLER I I. The International Global Navigation Satellite Systems Service (IGS): Development and Achievements[J]. Journal of Geodesy, 2009, 83(3-4): 297-307. [17] 许其凤. GPS卫星导航与精密定位[M]. 北京: 解放军出版社, 1989. [18] 许其凤, 张素丽. 模糊度参数整数约束的GPS卫星定轨与轨道改进定位[J]. 测绘学报, 1989, 18(1): 30-38. [19] 许尤楠. GPS卫星的精密定轨[M]. 北京: 解放军出版社, 1989. [20] 葛茂荣. GPS卫星精密定轨理论及软件研究[D]. 武汉: 武汉测绘科技大学, 1995. [21] 王解先. GPS精密定轨定位[M]. 上海: 同济大学出版社, 1997. [22] 王刚. 广域差分GPS系统研究[D]. 郑州: 信息工程大学, 2001. [23] 贾小林. 导航卫星系统星座设计及定轨研究[D]. 郑州: 信息工程大学, 2001. [24] 赵齐乐. GPS导航星座及低轨卫星的精密定轨理论和软件研究[D]. 武汉: 武汉大学, 2004. [25] 姚宜斌. GPS精密定位定轨后处理算法与实现[D]. 武汉: 武汉大学, 2004. [26] 楼益栋. 导航卫星实时精密轨道与钟差确定[D]. 武汉: 武汉大学, 2008. [27] 匡翠林. 利用GPS非差数据精密确定低轨卫星轨道的理论及方法研究[D]. 武汉: 武汉大学, 2008. [28] 李敏. 多模GNSS融合精密定轨理论及其应用研究[D]. 武汉: 武汉大学, 2011. [29] IGS CENTRAL BUREAU. International GNSS Service Strategic Plan 2002-2007[EB/OL]. [2010-10-08].http://www.igs.org. [30] BEUTLER G, BROCKMANN E, HUGENTOBLER U, et al. Combining Consecutive Short Arcs into Long Arcs for Precise and Efficient GPS Orbit Determination[J]. Journal of Geodesy, 1996, 70(5): 287-299. [31] BROCKMANN E. Combination of Solutions for Geodetic and Geodynamic Applications of the Global Positioning System (GPS)[D]. Bern: University of Bern, 1996. [32] DONG D, HERRING T A, KING R W. Estimating Regional Deformation from a Combination of Space and Terrestrial Geodetic Data[J]. Jounal of Geodesy, 1998, 72(4): 200-214. [33] BOOMKAMP H. IGS LEO Working Group Annual Report 2003-2004[EB/OL]. [2010-10-08]. http://www.igs.org. [34] ZHU S, REIGBER C, KÖNIG R. Integrated Adjustment of CHAMP, GRACE, and GPS Data[J]. Jounal of Geodesy, 2004, 78(1-2): 103-108. [35] BOOMKAMP H, DOW J. Use of Double Difference Observations in Combined Orbit Solutions for LEO and GPS Satellites[J]. Advances in Space Research, 2005, 36(3): 382-391. [36] HUGENTOBLER U, JÄGGIA, SCHAER S, et al. Combined Processing of GPS Data from Ground Station and LEO Receivers in a Global Solution[C]//Proceedings of the International Association of Geodesy IAG General Assembly. Sapporo, Japan: [s.n.], 2003: 169-174. [37] KÖNIG R, REIGBER C, ZHU S. Dynamic Model Orbits and Earth System Parameters from Combined GPS and LEO Data[J]. Advances in Space Research, 2005, 36(3): 431-437. [38] ŠVEHLA D, ROTHACHER M. Kinematic Positioning of LEO and GPS Satellites and IGS Stations on the Ground[J]. Advances in Space Research, 2005, 36(3): 376-381. [39] DETTMERING D, SOEHNE W, FRANKE P, et al. The Use of GNSS Real-time Data Streams for Geodetic Applications——First Results and Perspectives[C]//EGU General Assembly. Vienna: [s.n.], 2007. [40] MUELLERSCHOEN R J, REICHERT A, KUANG D, et al. Orbit Determination with NASA's High Accuracy Rate-all-time Global Differential GPS System[C]//Proceedings of the ION GPS 2011. Long Beach, CA, USA: [s.n.], 2001: 2294-2303. [41] GE M, CHEN J, GENDT G. EPOS-RT: Software for Real-time GNSS Data Processing[C]//EGU General Assembly. Vienna: [s.n.], 2008. [42] ZHANG Q, MOORE P, HANLEY J, et al. Auto-BAHN: Software for Near Real-time GPS Orbit and Clock Computations[J]. Advances in Space Research, 2007, 39(10): 1531-1538. |