测绘通报 ›› 2017, Vol. 0 ›› Issue (5): 39-42,55.doi: 10.13474/j.cnki.11-2246.2017.0150

• 学术研究 • 上一篇    下一篇

无人机核线影像的稀疏匹配与稠密匹配

张漫1, 沈盛彧2, 胡腾3   

  1. 1. 北京信息职业技术学院, 北京 100015;
    2. 长江水利委员会长江科学院, 湖北 武汉 430010;
    3. 中国地质大学(北京), 北京 100083
  • 收稿日期:2017-01-09 出版日期:2017-05-25 发布日期:2017-06-03
  • 作者简介:张漫(1984-),女,硕士,讲师,主要从事图像处理技术和嵌入式技术研究。E-mail:zhangm@bitc.edu.cn
  • 基金资助:
    国家自然科学基金(41601298)

Sparse Matching and Dense Matching of UAV Epipolar Images

ZHANG Man1, SHEN Shengyu2, HU Teng3   

  1. 1. Beijing Information Technology College, Beijing 100015, China;
    2. Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430010, China;
    3. China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2017-01-09 Online:2017-05-25 Published:2017-06-03

摘要: 无人机影像转化为水平核线影像后,能够有效地减少同名点的搜索空间。在此基础上,本文使用SIFT算子进行了稀疏匹配,并用BP算法进行了稠密匹配。结果表明:①SIFT算子获取的同名点比较少,但是计算方法简单,同名点空间坐标精确,适用于大范围获取简要的空间三维信息;②BP算法计算复杂度高,可以获取地物大量的同名点,适用于小范围的地物三维重建。总体而言,两者各有优缺点,在实际的应用中可互补。

关键词: SIFT算子, 稀疏匹配, BP算法, 稠密匹配

Abstract: Converting UAV images to epipolar images, makes a good effect on reducing the search space of corresponding point matching. On this basis, SIFT operator based sparse stereo matching and BP algorithm based dense stereo matching were presented in this paper. The result indicated that:Less corresponding points, simple calculation and accurate spatial coordinates were shown in the results of SIFT operator, so SIFT operator was suitable to acquire summary spatial information in a big-scale area. The computation of BP algorithm was complex but a large number of same points were outputted, which indicated that BP algorithm applied to 3D reconstruction in a small range. In a word, each of them has its own advantages and disadvantages, and they can be complementary.

Key words: SIFT operator, sparse stereo matching, BP algorithm, dense stereo matching

中图分类号: