测绘通报 ›› 2018, Vol. 0 ›› Issue (5): 29-34.doi: 10.13474/j.cnki.11-2246.2018.0139

• 学术研究 • 上一篇    下一篇

结合几何约束和梯度描述子的直线段匹配

王竞雪, 张雪   

  1. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
  • 收稿日期:2017-08-07 出版日期:2018-05-25 发布日期:2018-05-31
  • 作者简介:王竞雪(1981-),女,博士,副教授,主要研究方向为图像匹配、三维建模、雷达点云数据处理等。E-mail:xiaoxue1861@163.com
  • 基金资助:

    国家自然科学基金(41101452)

Line Segment Matching Based on Geometric Constraints and Gradient Descriptor

WANG Jingxue, ZHANG Xue   

  1. School of Geometrics, Liaoning Technical University, Fuxin 123000, China
  • Received:2017-08-07 Online:2018-05-25 Published:2018-05-31

摘要:

针对无约束条件下直线匹配的可靠性问题,提出了一种结合几何约束和梯度描述子的直线段匹配算法。该算法在已有同名点和直线提取结果的基础上,首先结合同名三角网和核线约束确定候选直线;其次以目标直线为基础,利用其端点核线确定候选直线与目标直线对应的重叠段区域;再次分别以目标直线和候选直线对应的重叠段为基础,构建直线平行支撑域,对目标直线和候选直线构建高斯卷积梯度幅值的均值-标准差描述子;最后结合欧氏距离和最邻近比值(NNDR)确定最终同名直线。选取具有不同类型的影像对进行匹配试验,结果表明,本文方法能获得可靠的直线匹配结果。

关键词: 梯度幅值描述子, 三角网约束, 核线约束, 直线平行支撑域, 最近邻距离比率

Abstract:

Aiming at the reliability of line segment matching under the condition of non-constraint,this paper proposed a line matching algorithm based on geometric constraints and gradient descriptor.Based on the corresponding points and straight line extraction results,the algorithm firstly determined the candidate lines by corresponding triangulations and epipolar constraints.Secondly,it determined the overlapping of the candidate line which corresponding the reference line based on the epipolar of reference line endpoints.Thirdly,based on corresponding overlapping segments,it established straight line parallel support region for reference line and candidate line respectively,and then constructed gradient magnitude mean-standard deviation descriptor with Gaussian convolution.Finally,the corresponding line was determined by Euclidean distance in descriptors and nearest neighbor distance ratio.Experimental studies are carried out with different kinds of images,and the results show that the proposed method is reliable for line matching.

Key words: gradient magnitude descriptor, triangulation constraint, epipolar constraint, straight line parallel support region, nearest neighbor distance ratio

中图分类号: