测绘通报 ›› 2020, Vol. 0 ›› Issue (1): 82-88.doi: 10.13474/j.cnki.11-2246.2020.0017

• 学术研究 • 上一篇    下一篇

多源空间大数据支持下的南京高校区位优势度分析

黄胜, 张家杰, 荣东超, 夏泽龙, 陈跃红   

  1. 河海大学地球科学与工程学院, 江苏 南京 211100
  • 收稿日期:2019-04-22 修回日期:2019-10-17 发布日期:2020-02-10
  • 通讯作者: 陈跃红。E-mail:yuehong@hhu.edu.cn E-mail:yuehong@hhu.edu.cn
  • 作者简介:黄胜(1998-),男,主要研究方向为地理信息系统。E-mail:1126456109@qq.com
  • 基金资助:
    中国科学院战略性先导科技专项(XDA20030302);国家自然科学基金(41701376);江苏省自然科学基金(BK20170866)

Spatial location advantage analysis for university campuses in Nanjing, China using multi-source spatial big data

HUANG Sheng, ZHANG Jiajie, RONG Dongchao, XIA Zelong, CHEN Yuehong   

  1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
  • Received:2019-04-22 Revised:2019-10-17 Published:2020-02-10

摘要: 基于城市空间大数据,综合生活、交通、环境、人口因素构建了高校区位优势度的评价指标体系,结合专家打分及熵权法对南京高校区位优势进行评估。结果表明:①南京高校综合区位优势度在空间上呈现以南京新街口地区为中心并且向四周递减的结构,区域化特征差异明显;②高校生活区位优势呈现“一超多强”且沿地铁线路分布的多核心空间格局,生活评分变化幅度与所在区域的商业辐射能力呈正相关关系,并且随着范围的扩大两极分化程度加深;③高校交通区位优势以新街口地区为中心,呈现中心评分高、四周低,并主要沿轨道交通线路分布的空间格局;④综合评价表明南京的3个大学城中,江宁大学城发展最好,其次为仙林,浦口最差,但均与主城区内高校群存在较大差距。本文评价结果可为南京市城市基础设施建设,大学城完善及新建大学城规划布局提供科学参考。

关键词: 多源空间大数据, 熵权法, 高校区位优势度, 大学城, 南京

Abstract: Based on multi-source spatial big data, this paper proposes an evaluation model of spatial location advantage for university campuses in Nanjing, China. The evaluation model considers four factors including living, transportation, environment and population and they are combined by experts scoring and entropy weight methods. The evaluation results show that:①The comprehensive spatial location advantage of university campuses in Nanjing presents a spatially decreasing trend from the central area of Nanjing and has significant differences between districts; ②The spatial location advantage of living factor presents "one superpower and multi powers" structure and its spatial pattern is related to Nanjing metro network, the spatial location advantage change of living factor is positively correlated with the commercial radiation capacity; ③The spatial location advantage of transportation reaches the highest in Xinjiekou area and has a strong relationship with Nanjing metro network; ④Jiangning higher education mega center has the highest comprehensive evaluation score, followed by Xianlin higher education mega center and the Pukou higher education mega center withthe lowest comprehensive score, but they have a large gap to university campuses in the central area of Nanjing. The evaluation analysis can provide a valuable decision-making support for the construction of urban in Nanjing and the improvement of higher education mega centers in future.

Key words: multi-source spatial big data, entropy weight method, spatial location advantages for university campuses, higher education mega center, Nanjing

中图分类号: