测绘通报 ›› 2020, Vol. 0 ›› Issue (6): 67-70.doi: 10.13474/j.cnki.11-2246.2020.0183

• 学术研究 • 上一篇    下一篇

面向低成本车载IMU的安装姿态估计

冯木榉1,2, 高迪3, 何文涛1,2   

  1. 1. 中国科学院微电子研究所, 北京 100020;
    2. 中国科学院大学, 北京 100049;
    3. 中国科学院大学微电子学院, 北京 100043
  • 收稿日期:2019-08-12 出版日期:2020-06-25 发布日期:2020-07-01
  • 作者简介:冯木榉(1995-),男,硕士生,主要研究方向为INS+GNSS组合导航。E-mail:fengmuju17@mails.ucas.ac.cn
  • 基金资助:
    国家科技重大专项(2013ZX02310)

A mounting-attitude estimation algorithm for low-cost vehicle IMU

FENG Muju1,2, GAO Di3, HE Wentao1,2   

  1. 1. Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100020, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100043, China
  • Received:2019-08-12 Online:2020-06-25 Published:2020-07-01

摘要: 车载IMU相对于车体的安装姿态信息是应用车辆非完整约束的必需条件,而车辆非完整约束可以有效解决GNSS信号长时间中断的情形下低成本INS+GNSS组合导航系统精度降低的问题。本文针对车载场景下的低成本消费级IMU,基于卡尔曼滤波和粒子滤波提出了一种估计IMU安装姿态的算法。该算法无需限制IMU相对于车体的姿态为小角度;随后,基于仿真平台对低成本消费级IMU进行建模,利用生成的若干组不同安装姿态的IMU数据对算法进行验证;最后进行车载测试。仿真结果和车载测试结果都表明,该算法可以准确地估计IMU相对于车体的安装姿态,对于低成本INS+GNSS组合导航系统精度的提高具有实际意义。

关键词: 安装姿态, 车辆非完整约束, 卡尔曼滤波, 粒子滤波, 组合导航

Abstract: The mounting-attitude values of IMU to vehicle is a necessary condition for applying the non-holonomic constraints of vehicle, and such constraints can effectively solve the problem of precision reducing of the low-cost INS/GNSS integrated navigation system, when the GNSS signal is interrupted for a long time. This paper proposes an algorithm for estimating the mounting-attitude of the low-cost consumer-grade IMU based on Kalman filtering and particle filtering in the scene of vehicle, which does not need to limit that the attitude of the IMU to the vehicle is a small angle. Subsequently, based on the simulation platform, a low-cost consumer-grade IMU is modeled, and the algorithm is verified by using the generated IMU data of different sets of different mounting-attitude. Finally, an on-board test was conducted. Both the simulation results and the on-board test results show that the algorithm can accurately estimate the mounting-attitude of the IMU relative to the vehicle, which has a practical significance for the improvement of precision of low-cost INS/GNSS integrated navigation system.

Key words: mounting-attitude, non-holonomic constraints of vehicle, Kalman filtering, particle filtering, integrated navigation

中图分类号: