[1] SHENG Y, GONG P, XIAO Q. Quantitative dynamic flood monitoring with NOAA AVHRR[J]. International Journal of Remote Sensing, 2001, 22(9):1709-1724. [2] 马国斌,蒋卫国,李京,等.中国短时洪涝灾害危险性评估与验证[J].地理研究,2012,31(1):34-44. [3] 李加林,曹罗丹,浦瑞良.洪涝灾害遥感监测评估研究综述[J].水利学报,2014,45(3):253-260. [4] 张桂香,霍治国,吴立,等.1961-2010年长江中下游地区农业洪涝灾害时空变化[J].地理研究,2015,34(6):1097-1108. [5] 李景刚, 黄诗峰, 李纪人. ENVISAT卫星先进合成孔径雷达数据水体提取研究——改进的最大类间方差阈值法[J]. 自然灾害学报, 2010, 19(3):139-145. [6] HONG S, JANG H, KIM N, et al. Water area extraction using RADARSAT SAR imagery combined with Landsat imagery and terrain information[J].Sensors,2015, 15(3):6652-6667. [7] 杜敬. 基于深度学习的湖泊湿地信息提取及时空演变特征研究[D].抚州:东华理工大学, 2017. [8] LÄNGKVIST M, KISELEV A, ALIREZAIE M, et al. Classification and segmentation of satellite orthoimagery using convolutional neural networks[J]. Remote Sensing, 2016, 8(4):329. [9] 王雪, 隋立春, 钟棉卿, 等. 全卷积神经网络用于遥感影像水体提取[J]. 测绘通报, 2018(6):41-45. [10] WANG Z B, GAO X, ZHANG Y N, et al. MSLWENet:a novel deep learning network for lake water body extraction of google remote sensing images[J]. Remote Sensing, 2020, 12(24):4140. [11] ZHANG H, GONG M G, ZHANG P Z, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1666-1670. [12] SCOTT G J, ENGLAND M R, STARMS W A, et al. Training deep convolutional neural networks for land-cover classification of high-resolution imagery[J].IEEE Geoscience and Remote Sensing Letters, 2017,14(4):549-553. [13] QI L, YONG D, XIN N, et al. Remote sensing image classification based on DBN model[J]. Journal of computer research and development, 2014, 51(9):1911. [14] LI W J, FU H H, YU L, et al. Stacked Autoencoder-based deep learning for remote-sensing image classification:a case study of African land-cover mapping[J]. International Journal of Remote Sensing, 2016, 37(23):5632-5646. [15] GONG M G, ZHAN T, ZHANG P Z, et al. Superpixel-based difference representation learning for change detection in multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2658-2673. [16] GENG J, WANG H Y, FAN J C, et al. Change detection of SAR images based on supervised contractive autoencoders and fuzzy clustering[C]//Proceedings of 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP).[S.l.]:IEEE,2017. [17] 徐锐, 余小于, 张驰,等. 融合Unet网络和IR-MAD的建筑物变化检测方法[J]. 国土资源遥感, 2020, 32(4):90-96. [18] RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-assisted Intervention.[S.l.]:Springer, 2015. [19] 王宁, 程家骅, 张寒野,等. U-net模型在高分辨率遥感影像水体提取中的应用[J]. 国土资源遥感, 2020, 32(1):35-42. [20] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2017. |