测绘通报 ›› 2022, Vol. 0 ›› Issue (8): 36-40,92.doi: 10.13474/j.cnki.11-2246.2022.0229

• 学术研究 • 上一篇    下一篇

融合Transformer结构的高分辨率遥感影像变化检测网络

冯炜明1, 张新长1, 孙颖2, 姜明1, 甘巧1, 侯幸幸1   

  1. 1. 广州大学地理科学与遥感学院, 广东 广州 510006;
    2. 中山大学地理科学与规划学院, 广东 广州 510275
  • 收稿日期:2022-02-17 发布日期:2022-09-01
  • 通讯作者: 张新长。E-mail:zhangxc@gzhu.edu.cn
  • 作者简介:冯炜明(1997-),男,硕士生,主要研究方向为智慧城市与城市遥感。E-mail:942846432@qq.com
  • 基金资助:
    国家重点研发计划(2018YFB2100702);国家自然科学基金面上项目(42071441);智慧广州时空信息云平台关键技术——时空大数据一体化整合与自适应动态更新模块研发与咨询服务项目(GZIT2016-A5-147)

High-resolution remote sensing image change detection network with Transformer structure

FENG Weiming1, ZHANG Xinchang1, SUN Ying2, JIANG Ming1, GAN Qiao1, HOU Xingxing1   

  1. 1. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China;
    2. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2022-02-17 Published:2022-09-01

摘要: 为解决遥感影像变化检测全局上下文信息捕获的问题,本文提出了基于孪生结构、跳跃连接结构及Transformer结构的TSU-Net。该模型编码器采用混合CNN-Transformers结构,借助自注意力机制捕获遥感影像的全局上下文信息,增强了模型对于像素级遥感影像变化检测任务的长距离上下文建模能力。该模型在LEVIR-CD数据集和CDD数据集进行测试,F1得分分别为90.73和93.14,优于各对比模型。

关键词: 深度学习, 遥感影像变化检测, Transformer, TSU-Net

Abstract: In order to solve the problem of global context information capture in remote sensing image change detection, this paper proposes TSU-Net based on twin structure, jump link structure and Transformer structure. The model encoder adopts a hybrid CNN-Transformers structure to capture the global context information of remote sensing images with the help of self-attention mechanism, which enhances the model's ability of long distance context modeling for pixel-level remote sensing image change detection task. The model is tested in the LEVIR-CD dataset and the CDD dataset, and the F1 scores are 0.9073 and 0.9314, respectively, which are superior to the comparison models.

Key words: deep learning, remote sensing image change detection, Transformer, TSU-Net

中图分类号: