测绘通报 ›› 2023, Vol. 0 ›› Issue (5): 130-134.doi: 10.13474/j.cnki.11-2246.2023.0149

• 技术交流 • 上一篇    下一篇

SSA-BP神经网络在无人机点云孔洞修补的应用

吕富强1, 唐诗华1,2, 张炎1,2, 宋晓辉1, 胡鹏程1, 李翥1   

  1. 1. 桂林理工大学测绘地理信息学院, 广西 桂林 541004;
    2. 广西空间信息与测绘重点实验室, 广西 桂林 541004
  • 收稿日期:2022-06-23 发布日期:2023-05-31
  • 通讯作者: 唐诗华。E-mail:919966068@qq.com
  • 作者简介:吕富强(1998-),男,硕士,研究方向为无人机数据处理与应用。E-mail:865129882@qq.com
  • 基金资助:
    国家自然科学基金(42064003)

Application of SSA-BP neural network in UAV point cloud hole repair

Lü Fuqiang1, TANG Shihua1,2, ZHANG Yan1,2, SONG Xiaohui1, HU Pengcheng1, LI Zhu1   

  1. 1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China;
    2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541004, China
  • Received:2022-06-23 Published:2023-05-31

摘要: 为了解决无人机点云数据中的孔洞修补问题,本文提出了基于麻雀搜索算法(SSA)优化BP神经网络的无人机点云孔洞修补方法。首先利用麻雀搜索算法对传统的BP神经网络进行初始权重与阈值的优化,再将麻雀搜索算法优化后的BP神经网络算法(SSA-BP)运用于无人机点云数据中孔洞的修补。为了验证算法的可行性,将SSA-BP神经网络与传统的BP神经网络、最小二乘支持向量机(LSSVM)两组算法进行精度比较。试验结果表明:SSA-BP神经网络算法的修补精度高于另外两组对比算法,且SSA优化后的BP神经网络稳定性更强,在复杂地形孔洞的修补中仍具有较好的修补效果。

关键词: 孔洞修补, 麻雀搜索算法, 优化, BP神经网络, 精度比较

Abstract: In order to solve the problem of hole repair in UAV point cloud data, a back-propagation neural networkhole repair method was proposed based on sparrow search algorithm (SSA). The sparrow search algorithm was used to optimize the initial weight and threshold of the traditional BP neural network, and then the BP neural network algorithm (SSA-BP) optimized by the sparrow search algorithm was applied to repair the holes in uav point cloud data. In order to verify the feasibility of the algorithm, the accuracy of SSA-BP neural network was compared with that of traditional BP neural network and least square support vector machine (LSSVM) algorithms. The experimental results show that the repair accuracy of SSA-BP neural network algorithm is higher than the other two groups of comparison algorithms, and the SSA-BP neural network is more stable, and it still has a good repair effect in the repair of complex terrain holes.

Key words: hole repair, sparrow search algorithm, optimization, BP neural network, accuracy comparison

中图分类号: