测绘通报 ›› 2023, Vol. 0 ›› Issue (5): 78-83,134.doi: 10.13474/j.cnki.11-2246.2023.0140

• 学术研究 • 上一篇    下一篇

采煤拉张裂隙区土壤有机质高光谱反演

张全旺, 郭辉   

  1. 安徽理工大学空间信息与测绘工程学院, 安徽 淮南 232001
  • 收稿日期:2022-07-28 发布日期:2023-05-31
  • 通讯作者: 郭辉。E-mail:hguo@aust.edu.cn
  • 作者简介:张全旺(1997-),男,硕士生,研究方向为高光谱遥感应用。E-mail:quanwang515@163.com
  • 基金资助:
    安徽理工大学引进人才科研基金(13200002);安徽理工大学研究生创新基金(2021CX2140)

Hyperspectral inversion of soil organic matter in tensile fracture zone of coal mining

ZHANG Quanwang, GUO Hui   

  1. School of Spatial Information and Surveying and Mapping Engineering, Anhui University of Science and Technology, Huainan 232001, China
  • Received:2022-07-28 Published:2023-05-31

摘要: 煤炭开采产生的拉张裂隙破坏土壤结构,影响土壤质量。利用高光谱技术对裂隙区土壤的重要成分进行监测,对精确恢复裂隙区土壤质量及改善农业产量具有重要意义。本文首先在淮北朱庄煤矿采煤拉张裂隙区采集了90组土壤样品,并在室内测定了土壤样本光谱;然后将反射率值与测定的有机质含量进行相关分析,选取对有机质敏感的特征波段;最后利用偏最小二乘、BP神经网络进行建模,并评价各模型的精度。研究表明,本文反演效果较理想,比较所建模型精度,一阶微分与偏最小二乘模型(FD-PLSR)建模效果最佳。FD-PLSR模型建模集和验证集的R2分别为0.876 1、0.845 9,RMSE分别为0.497 2、0.680 6。该研究可为采煤拉张裂隙区土壤有机质含量监测提供一定的技术支持。

关键词: 采煤拉张裂隙, 土壤有机质, 高光谱遥感, 偏最小二乘, BP神经网络

Abstract: The tensile cracks caused by coal mining destroy the soil structure and affect the soil quality. Using hyperspectral technology to monitor the important components of the soil in the fracture zone is of great significance for accurately restoring the soil quality in the fracture zone and improving agricultural production. In this study, 90 groups of soil samples are collected in the tensile fracture area of coal mining in Zhuzhuang coal mine in Huaibei, and the spectra of soil samples are measured indoors. The reflectance values are correlated with the measured organic matter content, and the characteristic bands sensitive to organic matter are selected. Partial least squares and BP neural network are used for modeling, and the accuracy of each model is evaluated. The results show that the inversion effect of this study is ideal, and the first-order differential and partial least squares model (FD-PLSR) has the best modeling effect. The R2 of FD-PLSR model are 0.876 1、0.845 9, and the RMSE of FD-PLSR model are 0.497 2、0.680 6, respectively. The research can provide some technical support for the monitoring of soil organic matter content in tension fracture zone of coal mining.

Key words: coal mining tensile cracks, soil organic matter, hyperspectral remote sensing, partial least squares, BP neural network

中图分类号: