测绘通报 ›› 2023, Vol. 0 ›› Issue (8): 84-90.doi: 10.13474/j.cnki.11-2246.2023.0237

• 学术研究 • 上一篇    下一篇

GNSS失锁下融合描述子与粒子滤波的LiDAR定位方法研究

李昂1, 钟若飞1, 刘正军2, 谢东海1, 吴伟3, 张琰1   

  1. 1. 三维信息获取与应用教育部重点实验室, 北京 100048;
    2. 中国测绘科学研究院, 北京 100039;
    3. 清华大学车辆与运载学院, 北京 100084
  • 收稿日期:2022-11-28 发布日期:2023-09-01
  • 通讯作者: 钟若飞。E-mail:zrfsss@163.com
  • 作者简介:李昂(1997-),男,硕士,研究方向为激光LiDAR定位。E-mail:2200902182@cnu.edu.cn
  • 基金资助:
    国家自然科学基金(U22A20568;42071444);国家重点研发计划(2022YFB3904101)

Research on LiDAR Positioning method of fusion descriptor and particle filter when GNSS loss of lock

LI Ang1, ZHONG Ruofei1, LIU Zhengjun2, XIE Donghai1, WU Wei3, ZHANG Yan1   

  1. 1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China;
    2. Chinese Academy of Surveying & Mapping, Beijing 100039, China;
    3. Tsinghua University, School of Vehicle and Mobility, Beijing 100084, China
  • Received:2022-11-28 Published:2023-09-01

摘要: 在GNSS失锁情况下,如何基于三维激光雷达进行定位,是值得关注的问题。通过点云匹配或蒙特卡洛定位(MCL)的方法进行定位,存在初值敏感、计算时间长和搜索空间大的问题。本文提出了一种定位方法,首先利用描述子初始化,确定粗略的位姿,缩小搜索空间,然后使用MCL进行精定位。通过给定描述子初值,预先计算三维网格概率,达到了缩小搜索空间、减少计算时间的效果。初步的试验结果表明,该方法在GNSS失锁情况下定位精度保持较好。

关键词: LiDAR, 描述子, 蒙特卡洛定位, GNSS失锁

Abstract: When GNSS loses lock, how to locate based on 3D LiDAR is a problem worthy of attention. Positioning by point cloud matching or Monte Carlo method has the problems of sensitivity to initial value, long calculation time and large search space. This paper proposes a two-step localization method, which first uses descriptor initialization, determines the rough pose, narrows the search space, and then uses Monte Carlo for fine localization. The use of descriptors in the method gives the initial value, reduces the search space, and pre-computes the three-dimensional grid probability, which reduces the computation time. Preliminary experimental results show that the positioning accuracy remains good in the case of GNSS loss of lock.

Key words: LiDAR, descriptor, Monte Carlo localization, GNSS loss of lock

中图分类号: