测绘通报 ›› 2025, Vol. 0 ›› Issue (1): 22-28.doi: 10.13474/j.cnki.11-2246.2025.0105

• 智能化电力测绘 • 上一篇    

复杂场景下基于深度学习与多传感器融合的无人机配网巡检智能避障技术

廖红兵1, 况松陵2, 李扬帆2, 黄晓露2, 王刚2, 魏洪2   

  1. 1. 国网四川省电力公司, 四川 成都 610000;
    2. 国网绵阳供电公司, 四川 绵阳 621000
  • 收稿日期:2024-10-24 发布日期:2025-02-09
  • 作者简介:廖红兵(1982—),男,硕士,高级工程师,主要研究方向为配电网运维。E-mail:xwlhnzz@126.com
  • 基金资助:
    国网四川省电力公司科技项目(52190523002)

Intelligent obstacle avoidance technology for UAV distribution network inspection based on deep learning and multi-sensor fusion in complex scenarios

LIAO Hongbing1, KUANG Songling2, LI Yangfan2, HUANG Xiaolu2, WANG Gang2, WEI Hong2   

  1. 1. State Grid Sichuan Electric Power Company, Chengdu 610000, China;
    2. State Grid Mianyang Power Supply Company, Mianyang 621000, China
  • Received:2024-10-24 Published:2025-02-09

摘要: 在电力配网的巡检过程中,复杂的环境条件,如树木遮挡和随机性障碍物,常常导致无人机在执行任务时遇到悬停、撞机等问题,严重影响巡检效率和安全性。为应对这一挑战,本文提出了一种针对复杂场景下的无人机自动巡检智能避障技术,开发了融合激光雷达和机器视觉的环境感知系统,通过利用空洞空间金字塔池化结构增大卷积核的感受野,捕获多尺度信息对障碍物进行实时识别,并利用先进的路径规划算法动态调整无人机的飞行路径,以避开障碍物。仿真测试验证表明,该系统在复杂环境中的避障能力得到显著提高,巡检效率提升了20%以上,且有效降低了事故风险。本文所提出的智能避障技术为电力配网的无人机巡检提供了一种高效、安全的解决方案,具备广泛的应用价值和推广前景。

关键词: 无人机, 空洞空间金字塔池化, 避障能力, 路径规划

Abstract: In the inspection process of electric power distribution networks, complex environmental conditions, such as tree shading and random obstacles, often lead to UAVs encountering problems such as hovering and crashing when performing their tasks, which seriously affects inspection efficiency and safety. To cope with this challenge, this paper proposes an intelligent obstacle avoidance technique for automatic UAV inspection in complex scenarios. An environmental sensing system fusing LiDAR and machine vision is developed to capture multi-scale information for real-time obstacle identification by utilizing an atrous spatial pyramid pooling structure to increase the sensory field of convolution kernel. Advanced path planning algorithms are utilized to dynamically adjust the UAV's flight path to avoid obstacles. The results on the simulation tests show that the system's obstacle avoidance ability in complex environments is significantly improved, the inspection efficiency is increased by more than 20%, and the risk of accidents is effectively reduced. The proposed intelligent obstacle avoidance technology provides an efficient and safe solution for UAV inspection of power distribution networks, which has a wide range of application value and promotion prospects.

Key words: unmanned aerial vehicle, atrous spatial pyramid pooling, obstacle avoidance, path planning

中图分类号: