测绘通报 ›› 2025, Vol. 0 ›› Issue (3): 138-143.doi: 10.13474/j.cnki.11-2246.2025.0324

• 技术交流 • 上一篇    

基于无人机遥感影像多维特征的茶树种植信息提取方法

杨家芳1, 尹林江1, 张洪亮2, 赵卫权1, 李威1   

  1. 1. 贵州省山地资源研究所, 贵州 贵阳 550001;
    2. 贵州科学院, 贵州 贵阳 550001
  • 收稿日期:2024-07-11 发布日期:2025-04-03
  • 通讯作者: 张洪亮。E-mail:zhl69827@sina.com
  • 作者简介:杨家芳(1987—),女,硕士生,助理研究员,主要从事农业遥感应用研究。E-mail:596317986@qq.com
  • 基金资助:
    贵州省科技支撑计划(黔科合支撑〔2022〕一般164;黔科合基础-ZK〔2024〕一般631;黔科合支撑〔2024〕一般148)

The extraction method of tea plantation information based on multi-dimensional features from UAV remote sensing images

YANG Jiafang1, YIN Linjiang1, ZHANG Hongliang2, ZHAO Weiquan1, LI Wei1   

  1. 1. Guizhou Institute of Mountain Resources, Guiyang 550001, China;
    2. Guizhou Academy of Sciences, Guiyang 550001, China
  • Received:2024-07-11 Published:2025-04-03

摘要: 茶树作为重要经济作物,快速测定其种植面积对茶叶估产、茶园管理决策优化等具有重要价值。本文首先通过无人机获取茶树多光谱遥感影像,选取植被指数、纹理特征及其组合特征作为多元分析指标;然后利用随机森林模型与相关性分析,对多元分析指标进行重要性评估与相关性检验;最后采用最大似然法(MLC)、支持向量机(SVM)及随机森林(RF)3类监督分类算法,对研究区域的茶树种植分布进行高精度识别研究。结果表明:①在SVM和RF算法下,使用纹理特征或多特征组合相较于单一植被指数特征能够显著提升分类精度;②可见光植被指数和纹理特征联合应用为研究区的最优分类特征组合,SVM算法下分类总精度高达95.5%,Kappa系数为0.917;③基于全量特征和特征降维数据集未显著提升分类精度,但后者分类结果稳定性最高,且分类精度仅次于最优分类特征组合。综上,利用SVM算法,基于可见光植被指数与纹理特征组合,能有效区分茶树与其他地物,实现茶树种植信息的高精度提取,从而为作物种植信息精准提取提供实践指导。

关键词: 无人机, 茶树, 种植信息提取, 植被指数, 纹理特征

Abstract: As a crucial economic crop, the rapid measurement of tea planting areas holds significant value for estimating tea yield, optimizing tea garden management strategies. The study employs UAV to obtain multispectral remote sensing images of tea plants. It selects vegetation indices, texture features, and their combined features as multivariate analysis indicators. By using the RF model and correlation analysis, the study evaluates the importance of these indicators and performs correlation tests. Subsequently, three supervised classification algorithms, namely MLC, SVM, and RF are utilized to precisely identify the distribution of tea plants plantations in the study area. The results reveal that: ①When using the SVM and RF algorithms, the incorporation of texture features or multi-feature combinations notably enhances classification accuracy compared with using a single vegetation index feature. ②The optimal classification feature combination for the study area is identified as the visible vegetation indices combined with texture features, achieving a total classification accuracy of 95.5% and a Kappa coefficient of 0.917 with the SVM algorithm. ③The use of full-feature datasets and feature dimensionality reduction datasets does not significantly enhance classification accuracy; however, the latter demonstrates the highest stability in classification results and achieves an accuracy that is second only to the optimal classification feature datasets. In summary, by utilizing the SVM algorithm,the fusion of visible vegetation indices and texture features can effectively differentiate tea plants from other land features,achieve high-precision extraction of tea planting information,and provide valuable reference and practical guidance for accurately extracting crop planting information.

Key words: UAV, tea plants, plantation information extraction, vegetation indices, texture features

中图分类号: