测绘通报 ›› 2025, Vol. 0 ›› Issue (4): 58-62.doi: 10.13474/j.cnki.11-2246.2025.0410

• 学术研究 • 上一篇    

融合升降轨SBAS-InSAR技术的冕宁县滑坡隐患识别与分析

尚依炜1, 熊俊楠1,2, 贾倩3, 罗思远4, 王启盛5, 曹依帆6   

  1. 1. 西南石油大学土木工程与测绘学院, 四川 成都 610500;
    2. 西藏自治区卫星遥感与应用重点实验室, 西藏 拉萨 851400;
    3. 西南石油大学地球科学与技术学院, 四川 成都 610500;
    4. 四川省地质工程勘察院集团有限公司, 四川 成都 610072;
    5. 四川省第四地质大队, 四川 成都 611130;
    6. 四川水发勘测设计研究有限公司, 四川 成都 610072
  • 收稿日期:2024-08-20 发布日期:2025-04-28
  • 通讯作者: 熊俊楠。E-mail:neu_xjn@163.com
  • 作者简介:尚依炜(2000—),女,硕士生,主要研究方向为InSAR地质灾害早期识别。E-mail:2373576596@qq.com
  • 基金资助:
    四川省科技厅重点研发项目(2024YFHZ0134);国家重点研发计划(2023YFC3006701);四川省科研院所基本科研业务费(2023JDKY0039-01)

Identification and analysis of landslide hazards in Mianning county using fusion of ascending and descending orbit SBAS-InSAR technology

SHANG Yiwei1, XIONG Junnan1,2, JIA Qian3, LUO Siyuan4, WANG Qisheng5, CAO Yifan6   

  1. 1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China;
    2. Xizang Autonomous Region Key Laboratory of Satellite Remote Sensing and Application, Lhasa 851400, China;
    3. College of Geosciences and Technology, Southwest Petroleum University, Chengdu 610500, China;
    4. Sichuan Geological Engineering Investigation Institute Group Co., Ltd., Chengdu 610072, China;
    5. Sichuan No. 4 Geological Brigade, Chengdu 611130, China;
    6. Sichuan Shuifa Survey, Design and Research Co., Ltd., Chengdu 610072, China
  • Received:2024-08-20 Published:2025-04-28

摘要: 针对单一轨道InSAR技术在滑坡隐患识别中的漏判、错判问题,本文提出了融合升降轨数据的SBAS-InSAR技术。以四川省冕宁县为例,利用2019—2021年Sentinel-1A的90景升轨和80景降轨数据反演二维形变场,结合光学遥感影像,共识别出30处滑坡隐患;在垂直形变场中,识别滑坡隐患增加至34处,其中25处为已知灾点,9处为新增隐患。试验结果表明,垂直形变监测在滑坡隐患识别中具有更强的观测能力,提升精度的同时弥补了单一轨道的局限性。选取3处典型隐患进行时空分布、光学影像和降水量分析,结果显示,坡体不稳定,受降水影响较大,尤其在6—8月集中降水期间,形变呈加速趋势。

关键词: 升降轨, SBAS-InSAR, 滑坡隐患识别

Abstract: To address the issues of missed and misclassified landslide hazards using single-track InSAR technology, this paper proposes a method that integrates ascending and descending track data in the SBAS-InSAR technique. Taking Mianyang county, Sichuan province, as an example, a 2D deformation field was derived from 90 ascending and 80 descending track Sentinel-1A images from 2019 to 2021, combined with optical remote sensing imagery, identifying a total of 30 landslide hazards. In the vertical deformation field, the number of identified landslide hazards increased to 34, with 25 known disaster points and 9 new hazards. The results indicate that vertical deformation monitoring has a stronger observational capability for landslide hazard identification, improving accuracy and compensating for the limitations of single-track data. Three typical hazards are selected for spatiotemporal distribution analysis, optical imagery, and rainfall data analysis. The results show that the slope body is unstable and significantly influenced by rainfall, especially during the concentrated rainfall period from June to August, where deformation exhibited an accelerating trend.

Key words: ascending and descending tracks, SBAS-InSAR, landslide hazard identification

中图分类号: