测绘通报 ›› 2025, Vol. 0 ›› Issue (5): 27-33.doi: 10.13474/j.cnki.11-2246.2025.0505

• 生态全要素监测与分析 • 上一篇    

金属冶炼厂周边农田土壤锌含量高光谱遥感反演

郭斌1, 张立业1, 邹滨2, 郭夏楠1, 白昊睿1, 张波2, 郭腾岳3, 吴敏1   

  1. 1. 西安科技大学测绘科学与技术学院, 陕西 西安 710054;
    2. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;
    3. 青海大学地质工程学院, 青海 西宁 810016
  • 收稿日期:2024-10-11 发布日期:2025-06-05
  • 作者简介:郭斌(1981—),男,博士,副教授,主要研究方向为高光谱遥感、时空数据分析与建模。E-mail:guobin12@xust.edu.cn
  • 基金资助:
    陕西省重点研发计划(2024NC-YBXM-241);陕西省自然科学基金(2024JC-YBQN-0304);陕西省环境介质痕量污染物监测预警重点实验室开放基金(SHJKFJJ202319);国家自然科学基金(42201042)

Hyperspectral remote sensing inversion of zinc content in farmland around metal smelter

GUO Bin1, ZHANG Liye1, ZOU Bin2, GUO Xianan1, BAI Haorui1, ZHANG Bo2, GUO Tengyue3, WU Min1   

  1. 1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. School of Geosciences and Info-physics, Central South University, Changsha 410083, China;
    3. Department of Geological Engineering, Qinghai University, Xining 810016, China
  • Received:2024-10-11 Published:2025-06-05

摘要: 由于土壤重金属为痕量元素,导致光谱响应微弱,特征波段提取困难,反演模型精度偏低。针对以上问题,本文设计了一种从类标准土壤样本中提取光谱响应先验知识的新方案。首先在某锌冶炼厂周边农田共采集了226个表层(0~20 cm)土壤样品,其中53个用于制备类标准土壤样本,并测量了土壤样品锌(Zn)含量和反射光谱;然后利用连续小波变换(CWT)重构光谱反射率,基于迁移成分分析 (TCA) 算法将类标准土壤样本的先验知识应用于ZY-1-02D影像光谱中;最后采用随机森林(RF)和极限学习机(ELM)拟合Zn含量定量反演模型,根据精度评价确定最优反演模型。结果表明,迁移学习能够实现光谱响应增强以及模型精度提高,为利用先验知识反演相关土壤参数研究提供了一定借鉴。

关键词: 土壤重金属, 电感耦合等离子体质谱, 机器学习, 便携式地物光谱仪, 交叉验证, 原位采样

Abstract: The weak spectral response of trace elements such as soil heavy metals makes feature band extraction challenging,leading to lower accuracy in inversion models. To address these issues,this study intends to use a new approach that extracts spectral response prior knowledge from class-standard soil samples. Firstly,a total of 226 surface(0~20 cm) soil samples were collected from farmland surrounding a zinc smelting plant,with 53 samples used to prepare class-standard soil samples, and both soil zinc content and reflectance spectra were measured. Then,continuous wavelet transform (CWT) was employed to reconstruct the spectral reflectance,and the transfer component analysis (TCA) algorithm was applied to transfer the prior knowledge from class-standard soil samples to ZY-1-02D image spectra. Finally,quantitative inversion models for Zn content were fitted using random forest (RF) and extreme learning machine (ELM),and the optimal inversion model was determined based on accuracy evaluation. The results indicate that transfer learning can achieve spectral response enhancement and improve model accuracy.The paper provides a reference for the study of retrieving relevant soil parameters using prior knowledge.

Key words: heavy metals, ASD FieldSpec4, machine learning, ICP-MS, cross-validation, in-situ sampling

中图分类号: