测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 144-149,177.doi: 10.13474/j.cnki.11-2246.2025.1225

• 技术交流 • 上一篇    

融合多源时空数据的改进型生态环境评价指数模型研究与实践

潘磊, 周松, 李亚男, 饶加旺   

  1. 江苏省测绘工程院, 江苏 南京 210019
  • 收稿日期:2025-08-25 发布日期:2025-12-31
  • 作者简介:潘磊(1983—),男,高级工程师,主要研究方向为时空数据管理与应用、信息化测绘等。E-mail:110261047@qq.com
  • 基金资助:
    江苏省自然资源科技创新项目(JSZRKJ202409)

Research and application of an improved ecological assessment index model integrating multi-source spatio-temporal data

PAN Lei, ZHOU Song, LI Yanan, RAO Jiawang   

  1. Jiangsu Surveying and Mapping Engineering Institute, Nanjing 210019, China
  • Received:2025-08-25 Published:2025-12-31

摘要: 针对现有生态指数忽视水体、难以全域评价的不足,本文集成多源时空数据,构建了一种改进型遥感生态指数(MRSEI)。该模型综合NDVI、NDBSI、TVDI、EWI与TWI指标,从绿度、干度、湿度和水体4个维度构建全域综合生态评价。基于2023年Landsat 8影像,以江苏沛县为例开展实证。结果显示,研究区生态环境整体持续改善,西部三乡镇及东部沿湖区域提升明显;相较于传统RSEI,MRSEI因保留水体并优化权重,水域评价精度显著提高(相关系数提升约12%)。本文方法可为县域生态质量精准评估与管理提供有效支持,且更适用于大范围水陆复合生态系统的精准监测。

关键词: 生态环境指数, 时空大数据, 遥感反演, 主成分分析法

Abstract: To address the limitations of existing ecological indices that often neglect water bodies and are inadequate for comprehensive regional assessment.This study develops an improved remote sensing ecological index (MRSEI)by integrated multi-source spatio-temporal data.The model incorporates five indicators—NDVI,NDBSI,TVDI,EWI,and TWI—to evaluate ecological conditions from four dimensions: greenness,dryness,wetness,and water.An empirical analysis is conducted using 2023 Landsat-8 imagery in Peixian county,Jiangsu province.The results indicate that the ecological environment in the study area had generally improved,with significant enhancements observed in three western towns and eastern lakeside regions.Compared to the traditional RSEI,the MRSEI demonstrates higher accuracy in evaluating water bodies (with a approximately 12% increase in correlation coefficient),owing to its incorporation of water-related indicators and optimized weighting.This study provides an effective tool for accurate ecological quality assessment and sustainable management at the county level,and more suitable for precise monitoring of large-scale land-water composite ecosystems.

Key words: MRSEI, spatio-temporal big data, remote sensing inversion, PCA

中图分类号: