测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 72-77.doi: 10.13474/j.cnki.11-2246.2026.0112

• 学术研究 • 上一篇    下一篇

基于SAR-DEM协同反演的洞庭湖芦苇湿地NPP分段函数回归模型与碳汇潜力评估

陈铸1,2, 李承昊2,3, 李雄文1,2, 陈纪舟2,3, 邓锦峰2,3, 陈江平2,3, 高立4, 杨翊钧5   

  1. 1. 湖南省第二测绘院, 湖南 长沙 410100;
    2. 自然生态系统碳汇监测湖南省工程研究中心, 湖南 长沙 410100;
    3. 武汉大学遥感信息工程学院, 湖北 武汉 430072;
    4. 徕易测量技术(上海)有限公司, 上海 201306;
    5. 常德市城市发展集团有限公司, 湖南 常德 415000
  • 收稿日期:2025-08-13 发布日期:2026-02-03
  • 通讯作者: 陈江平。E-mail:chen_jp@whu.edu.cn
  • 作者简介:陈铸(1983—),男,硕士,高级工程师,从事自然生态系统碳汇监测与遥感数据处理应用。E-mail:chenzhuchenzhu@126.com
  • 基金资助:
    湖南省自然科学基金(2025JJ80048;2023JJ60563)

Segmented regression model and carbon sequestration potential assessment of NPP in Dongting Lake reed wetland based on SAR-DEM collaborative inversion

CHEN Zhu1,2, LI Chenghao2,3, LI Xiongwen1,2, CHEN Jizhou2,3, DENG Jinfeng2,3, CHEN Jiangping2,3, GAO Li4, YANG Yijun5   

  1. 1. Hunan Second Surveying and Mapping Institute, Changsha 410100, China;
    2. Hunan Engineering Research Center for Monitoring of Natural Ecosystem Carbon Sinks, Changsha 410100, China;
    3. School of Remote Sensing Information Engineering, Wuhan University, Wuhan 430072, China;
    4. Laiyi Measurement Technology(Shanghai) Co., Ltd., Shanghai 201306, China;
    5. Changde City Urban Development Group Co., Ltd., Changde 415000, China
  • Received:2025-08-13 Published:2026-02-03

摘要: 芦苇湿地是重要碳汇生态系统,准确评估其固碳能力对碳循环与生态安全具有重要意义。本文以洞庭湖芦苇湿地为例,提出了融合多源遥感的净初级生产力(NPP)估算方法,探讨物候变化对碳汇能力的驱动机制。采用分段函数回归,协同Sentinel-1 SAR与DEM反演冠层高度,并融合Landsat 9 OLI与Sentinel-2光学数据,分别构建生长初期(4月)和枯萎期(11月)基于植被指数与冠层高度的NPP预测模型。研究显示,4月冠层高度与NPP显著正相关,11月枯萎期冠层高度维持但NPP显著下降且呈负相关;分段模型有效刻画了不同物候阶段的碳汇差异,并经2023年实测验证显著提高估算精度与可靠性。本文研究验证了多源遥感与分段建模可提升湿地碳汇动态监测的精度和时效性,为湿地精准管理提供了科学依据。

关键词: 芦苇湿地, 碳汇核算模型, 净初级生产力(NPP), SAR-DEM协同反演, 植被指数, 分段函数回归模型

Abstract: Reed wetlands are crucial carbon sink ecosystems.Accurately assessing their carbon sequestration capacity is vital for understanding the carbon cycle and ensuring ecological security.This study,taking the Dongting Lake reed wetland as an example,proposes a net primary productivity(NPP) estimation method integrating multi-source remote sensing,and explores the driving mechanism of phenological changes on carbon sink capacity.This study employed piecewise function regression.It synergistically utilized Sentinel-1 SAR and DEM data to invert canopy height.Landsat 9 OLI and Sentinel-2 optical data were fused to construct separate NPP prediction models for the initial growth stage (April) and the senescence period (November), based on vegetation indices and canopy height.The research revealed a significant positive correlation between canopy height and NPP in April.In contrast,during the November senescence period,although height was maintained,NPP decreased significantly and showed a negative correlation.The piecewise model effectively captured carbon sink differences across distinct phenological stages.Validation with field measurements from 2023 demonstrated that the method significantly improved estimation accuracy and reliability.This study validates that integrating multi-source remote sensing with piecewise modeling enhances the precision and timeliness of dynamic carbon sink monitoring in wetlands.It provides a scientific basis for precise wetland management.

Key words: phragmites wetlands, carbon sink accounting model, net primary productivity, SAR-DEM synergistic inversion, vegetation indices, segmented function regression model

中图分类号: