测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 85-90,99.doi: 10.13474/j.cnki.11-2246.2026.0114

• 学术研究 • 上一篇    下一篇

运动感知四维高斯辐射场重建与定位

宁光芳, 赵新辉   

  1. 河南体育学院, 河南 郑州 450044
  • 收稿日期:2025-05-29 发布日期:2026-02-03
  • 作者简介:宁光芳(1977—),女,硕士,高级实验师,主要研究方向为教育信息化与计算机应用、机器人及自动化技术。E-mail:NGF1977@163.com
  • 基金资助:
    河南省科技厅课题重点科技攻关项目(242102321139)

Motion-aware 4D Gaussian radiance field reconstruction and localization

NING Guangfang, ZHAO Xinhui   

  1. Henan Institute of Physical Education, Zhengzhou 450044, China
  • Received:2025-05-29 Published:2026-02-03

摘要: 在动态场景中实现相机位姿估计与四维高斯辐射场重建,为从二维图像走向真实世界的时空建模提供了关键路径。与现有方法普遍将动态目标视为干扰并加以剔除不同,本文提出了一种面向动态环境的运动感知四维建图框架,能够基于连续的 RGB-D 图像序列,递增式地跟踪相机位姿并构建随时间变化的高斯辐射场。具体而言,首先,生成运动掩码,为每个像素提供静态或动态的初始先验;然后,将三维高斯基元划分为静态与动态两类,动态高斯由稀疏控制点驱动的 MLP 变形网络建模其随时间变化的非刚性运动。为提升跨帧运动建模的准确性,本文进一步提出一种基于高斯渲染的光流图重建方法,显式渲染动态物体在相邻帧之间的运动偏移,并将其作为监督信号联合传统的光度与深度一致性约束,共同驱动四维高斯场的优化。试验结果表明,本文方法在 TUM RGB-D 与 BONN 动态数据集上展现出优异的跟踪精度与重建质量,尤其在多目标运动与结构复杂场景中展现了稳健、连续且高保真的时空建图性能。

关键词: 动态场景, 四维高斯辐射场, 位姿估计, 运动感知, 稀疏控制点, 光流监督, 联合优化

Abstract: Achieving camera pose estimation and 4D Gaussian radiance field reconstruction in dynamic scenes serves as a critical pathway for bridging 2D image observations and real-world spatiotemporal modeling.Unlike existing methods that typically treat dynamic objects as noise to be removed,this paper proposes a motion-aware 4D reconstruction framework tailored for dynamic environments.The system incrementally tracks camera poses and constructs a time-varying Gaussian radiance field from continuous RGB-D image sequences.Specifically,motion masks are generated to provide per-pixel static or dynamic priors; 3D Gaussian primitives are then divided into static and dynamic subsets,where dynamic Gaussians are modeled via a sparse set of control points and an MLP-based deformation network to capture non-rigid temporal motions.To further enhance inter-frame motion modeling,we introduce a novel Gaussian-rendered optical flow reconstruction approach that explicitly renders motion offsets of dynamic objects between adjacent frames.These optical flow cues are integrated with conventional photometric and geometric consistency constraints to jointly optimize the 4D Gaussian field.Experimental results on the TUM RGB-D and BONN dynamic datasets demonstrate the proposed method achieves robust pose tracking and high-quality scene reconstruction,especially in complex scenes with multiple moving objects and structural variation.

Key words: dynamic scenes, 4D Gaussian radiance field, pose estimation, motion awareness, sparse control points, optical flow supervision, joint optimization

中图分类号: