[1] 田彦平,陶超,邹峥嵘,等.主动学习与图的半监督相结合的高光谱影像分类[J].测绘学报,2015,44(8):919-926. [2] 李慧,王云鹏,李岩,等.基于SVM和PWC的遥感影像混合像元分解[J].测绘学报,2009,38(4):323-329. [3] 金晶,邹峥嵘,陶超.高分辨率遥感影像的压缩纹理元分类[J].测绘学报,2014,43(5):493-499. [4] 张伟,杜培军,张华鹏.基于神经网络的高光谱混合像元分解方法研究[J].测绘通报,2007(7):23-26. [5] 杜培军,林卉,孙敦新.基于支持向量机的高光谱遥感分类进展[J].测绘通报,2006(12):37-40. [6] DOPIDO I, LI J,MARPU P R,et al.Semisupervised Self-Learning for Hyperspectral Image Classification[J].Geoscience & Remote Sensing IEEE Transactions on,2013,51(7):4032-4044. [7] CAMPS-VALLS G,MARSHEVA T V B,ZHOU D.Semi-Supervised Graph-based Hyperspectral Image Classification[J].Geoscience & Remote Sensing IEEE Transactions on,2007,45(10):3044-3054. [8] LIU X,PAN S,HAO Z,et al.Graph-based Semi-supervised Learning by Mixed Label Propagation with a Soft Constraint[J].Information Sciences, 2014,277:327-337. [9] 王小攀.基于图的高光谱遥感数据半监督分类算法研究[D].北京:中国地质大学,2014. [10] 林晓峰.基于纹理特征的遥感图像分类算法研究[D].大连:大连理工大学,2007. [11] 倪国强,沈渊婷,徐大琦.一种基于小波PCA的高光谱图像特征提取新方法[J].北京理工大学学报,2007,27(7):621-624. [12] 王增茂,杜博,张良培,等.基于纹理特征和形态学特征融合的高光谱影像分类法[J].光子学报,2014(8):1-7. [13] 樊利恒,吕俊伟,于振涛,等.基于核映射多光谱特征融合的高光谱遥感图像分类法[J].光子学报,2014(6):93-98. [14] KLAUS B,KLIJN F.Local and Global Consistency Properties for Student Placement[J].Journal of Mathematical Economics,2011,49(3):222-229. [15] ZHOU D,BOUSQUET O,LAL T N,et al.Learning with Local and Global Consistency[J].Advances in Neural Information Processing Systems,2004,17(4):321-32. |