测绘通报 ›› 2019, Vol. 0 ›› Issue (1): 50-55.doi: 10.13474/j.cnki.11-2246.2019.0010

• 学术研究 • 上一篇    下一篇

结合超像素和卷积神经网络的国产高分辨率遥感影像云检测方法

徐启恒1, 黄滢冰1, 陈洋2,3   

  1. 1. 东莞市测绘院, 广东 东莞 523129;
    2. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000;
    3. 中国测绘科学研究院, 北京 100830
  • 收稿日期:2018-04-02 出版日期:2019-01-25 发布日期:2019-02-14
  • 通讯作者: 陈洋。E-mail:chenyang1017@126.com E-mail:chenyang1017@126.com
  • 作者简介:徐启恒(1986-),男,硕士,高级工程师,主要从事数字城市、GIS与城乡规划、空间数据挖掘等工作。E-mail:xuqiheng@163.com
  • 基金资助:
    国家自然科学基金重点项目(41431178);高等学校博士点专项科研基金(20120171110030)

Cloud detection for Chinese high resolution remote sensing imagery using combining superpixel with convolution neural network

XU Qiheng1, HUANG Yingbing1, CHEN Yang2,3   

  1. 1. Dongguan Institute of Surveying and Mapping, Dongguan 523129, China;
    2. School of Geomatics, Liaoning Technology University, Fuxin 123000, China;
    3. Chinese Academy of Surveying and Mapping, Beijing 100830, China
  • Received:2018-04-02 Online:2019-01-25 Published:2019-02-14

摘要: 由于国产高分辨率卫星遥感影像波段少、光谱范围窄,导致传统云检测方法精度低。本文提出了基于卷积神经网络的高分辨率遥感影像云检测方法。首先采用主成分分析非监督预训练网络结构,获取待测遥感影像云特征;然后采用超像素分割方法进行影像分割;最后将检测结果影像块拼接,完成整幅影像云检测。试验效果评价表明,基于卷积神经网络的高分辨率遥感影像云检测方法不受光谱范围限制,云检测精度高,误判较少,适合国产高分辨遥感影像云检测。

关键词: 高分辨率遥感影像, 卷积神经网络, 云检测, 超像素分割

Abstract: Accurate cloud detection in Chinese high resolution remote sensing imagery is very low, due to the fact that there are few image bands and limited spectral range. In this study, high resolution remote sensing image cloud detection method based on convolution neural network is proposed. At first, in terms of network training, this paper obtains the feature of remote sensing images through using principal component transform and unsupervised pre-training network structure. Then it enters the image block into the network for cloud detection using the superpixel segmentation method for segmentation. Finally, the test image block is spliced, and the entire image cloud detection is completed. Experiments show that this method has high computational accuracy and the ranges of the spectral bands are not a limit.

Key words: high resolution remote sensing image, convolution neural network, cloud detection, superpixel segmentation

中图分类号: