测绘通报 ›› 2019, Vol. 0 ›› Issue (9): 22-26.doi: 10.13474/j.cnki.11-2246.2019.0279

• 学术研究 • 上一篇    下一篇

对偶四元数法在稳健点云配准中的应用

李明峰, 陆海芳, 赵湘玉   

  1. 南京工业大学测绘科学与技术学院, 江苏 南京 211800
  • 收稿日期:2019-01-27 修回日期:2019-03-15 出版日期:2019-09-25 发布日期:2019-09-28
  • 作者简介:李明峰(1964-),男,教授,主要从事大地测量数据处理研究工作。E-mail:njuter@163.com
  • 基金资助:
    江苏省重点研发计划(BE2015698);江苏省研究生科研与实践创新计划(KYCX18_1055);南京市科技计划(201716027)

Application of dual quaternion method in robust point cloud registration

LI Mingfeng, LU Haifang, ZHAO Xiangyu   

  1. School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211800, China
  • Received:2019-01-27 Revised:2019-03-15 Online:2019-09-25 Published:2019-09-28

摘要: 针对点云特征点含有粗差的问题,提出了基于对偶四元数的稳健点云配准方法。遵循加权最小二乘原则构建了基于对偶四元数的稳健点云配准模型,运用拉格朗日乘数法推导了旋转矩阵和平移向量求解公式,研究了新权计算与坐标转换迭代步骤。实例证明,该方法能够有效识别并剔除粗差,提高点云配准精度。

关键词: 对偶四元数, 选权迭代法, 拉格朗日乘数法, 点云配准, 粗差

Abstract: Aiming at the problem that the feature points in point cloud data contain gross errors, a robust point cloud registration method based on dual quaternion is proposed. The robust point cloud registration model based on dual quaternion is constructed according to the principle of weighted least squares. The solution formulas of rotation matrix and translation vector are derived by Lagrange multiplier method. The iterative steps of new weight calculation and coordinate transformation are studied. The example shows that the gross error can be effectively identified and eliminated with the method, and the accuracy of point cloud registration is improved.

Key words: dual quaternion, weighted iteration method, Lagrange multiplier method, point cloud registration, gross error

中图分类号: