测绘通报 ›› 2020, Vol. 0 ›› Issue (1): 50-54.doi: 10.13474/j.cnki.11-2246.2020.0011

• 学术研究 • 上一篇    下一篇

融合小波变换与神经网络的RSSI室内测距算法

朱梦豪, 卢小平, 路泽忠, 李亚平, 陶晓晓   

  1. 河南理工大学矿山空间信息技术国家测绘地理信息局重点实验室, 河南 焦作 454000
  • 收稿日期:2019-04-21 修回日期:2019-06-24 发布日期:2020-02-10
  • 通讯作者: 卢小平。E-mail:hpuluxp@163.com,lxp@hpu.edu.cn E-mail:hpuluxp@163.com,lxp@hpu.edu.cn
  • 作者简介:朱梦豪(1993-),男,硕士,研究方向为室内外一体化定位。E-mail:898496702@qq.com
  • 基金资助:
    国家重点研发计划(2016YFC0803103);河南省高校创新团队支持计划(14IRTSTHN026)

RSSI indoor ranging algorithm based on wavelet transform and neural network

ZHU Menghao, LU Xiaoping, LU Zezhong, LI Yaping, TAO Xiaoxiao   

  1. Key Laboratory of Mine Spatial Information and Technology of NASMG, Jiaozuo 454000, China
  • Received:2019-04-21 Revised:2019-06-24 Published:2020-02-10

摘要: 提出一种融合小波变换与神经网络的基于WiFi的RSSI室内测距算法,该方法通过小波变换与神经网络对RSSI数据、路径损耗模型进行修正。利用小波分解与单支重构方法,只对低频的近似部分进行单支重构,舍弃高频细节部分,同时使用神经网络训练特定环境下的路径损耗模型。通过实例验证表明,该算法最大测距误差、最小测距误差、平均测距误差分别为1.206、0.037、0.692 m;平均测距误差比路径损耗模型、BP神经网络模型分别提高了1.846、0.469 m。

关键词: 小波分解与单支重构, 神经网络, 路径损耗模型, RSSI, 室内

Abstract: A WiFi-based RSSI indoor ranging algorithm based on wavelet transform and neural network is proposed. The method is to correct the RSSI data and path loss model by wavelet transform and neural network. Using wavelet decom position and single-reconstruction reconstruction method, only a single-branch reconstruction of the approximate part of the low-frequency, discarding the high-frequency details, and using the neural network to train the path loss model in a speci fic environment. The example shows that the maximum ranging error, minimum ranging error and average ranging error of the algorithm are 1.206, 0.037 and 0.692 m. The average ranging error is 1.846 and 0.469 m compared with the path loss model and BP neural network model.

Key words: wavelet decomposition and single-branch reconstruction, neural network, path loss model, RSSI, indoor

中图分类号: