测绘通报 ›› 2020, Vol. 0 ›› Issue (10): 93-96,100.doi: 10.13474/j.cnki.11-2246.2020.0326

• 技术交流 • 上一篇    下一篇

改进注意力机制的遥感地貌识别算法

张朕通1, 单玉刚2, 袁杰1   

  1. 1. 新疆大学电气工程学院, 新疆 乌鲁木齐 830047;
    2. 湖北文理学院教育学院, 湖北 襄阳 441053
  • 收稿日期:2019-12-27 修回日期:2020-03-16 出版日期:2020-10-25 发布日期:2020-10-29
  • 通讯作者: 单玉刚。E-mail:32748873@qq.com E-mail:32748873@qq.com
  • 作者简介:张朕通(1994-),男,硕士生,主要研究方向为模式识别,计算机视觉。E-mail:1580335323@qq.com
  • 基金资助:
    国家自然科学基金(61863033);湖北省教育厅科学技术研究项目(B2016175);湖北文理学院博士基金(2015B002)

Remote sensing landform recognition algorithm based on improved attention mechanism

ZHANG Zhentong1, SHAN Yugang2, YUAN Jie1   

  1. 1. School of Electrical Engineering, Xinjiang University, Urumqi 830047, China:;
    2. School of Education, Hubei University of Arts and Science, Xiangyang 441053, China
  • Received:2019-12-27 Revised:2020-03-16 Online:2020-10-25 Published:2020-10-29

摘要: 对遥感地貌进行识别,近年来一直是遥感图像应用领域的研究热点。使用深度学习算法识别遥感影像具有比传统方法更高的准确率和稳健性。针对遥感影像中目标复杂度高、特征信息多等问题,本文提出了一种基于改进注意力机制的遥感图像识别算法,即将并联注意力机制(CS)和神经网络模型相结合,借助弱监督学习来辅助训练。同时采用双损失函数来缓解数据过拟合问题。试验结果表明,本文模型总精度为98.35%,Kappa系数达0.95,优于其他深度学习算法,能有效地识别出自然地貌。

关键词: 遥感识别, 深度学习, 并联注意力机制, 弱监督训练, 双损失函数

Abstract: Recognizing remote sensing landforms has been a research hotspot in the field of remote sensing image applications in recent years. Using deep learning algorithms to identify remote sensing images has higher accuracy and robustness than traditional methods. Aimed at the problems of high target complexity and feature information in remote sensing images. This paper proposes a remote sensing image recognition algorithm based on an improved attention mechanism. A parallel attention mechanism (CS) and neural network model are combined to improve training with weakly supervised learning. At the same time, a double loss function is used to alleviate the problem of data overfitting. The experimental results show that the total accuracy of the model in this paper is 98.35%, and the Kappa coefficient is 0.95, which is better than other deep learning algorithms and can effectively recognize natural landforms.

Key words: remote sensing recognition, deep learning, parallel attention mechanism, weakly supervised training, double loss function

中图分类号: