测绘通报 ›› 2020, Vol. 0 ›› Issue (2): 37-42.doi: 10.13474/j.cnki.11-2246.2020.0041

• 学术研究 • 上一篇    下一篇

结合数据增广和迁移学习的高分辨率遥感影像场景分类

乔婷婷, 李鲁群   

  1. 上海师范大学信息与机电工程学院, 上海 201400
  • 收稿日期:2019-09-16 修回日期:2019-12-11 出版日期:2020-02-25 发布日期:2020-03-04
  • 通讯作者: 李鲁群。E-mail:liluqun@gmail.com E-mail:liluqun@gmail.com
  • 作者简介:乔婷婷(1996-),女,硕士生,研究方向为遥感与深度学习。E-mail:qiaotingting1124@gmail.com
  • 基金资助:
    上海教委重点项目(304-AC9103-19-368405029);教育部产学合作协同育人项目(309-C-6105-18-060)

Scene classification of high-resolution remote sensing image combining data augmentation and transfer learning

QIAO Tingting, LI Luqun   

  1. School of Information and Mechanical Engineering, Shanghai Normal University, Shanghai 201400, China
  • Received:2019-09-16 Revised:2019-12-11 Online:2020-02-25 Published:2020-03-04

摘要: 深度学习在计算机视觉领域取得了显著的成果,如图像分类、人脸识别、图像检索等。对于遥感领域而言,获取用于训练CNN的有标签数据集通常是一个重大挑战。本文研究了如何将CNN用于高分辨率遥感影像的场景分类,为了克服缺乏大量有标签遥感影像数据集的问题,结合CNN采用了两种技术:数据增广和迁移学习。在UC Merced Land Use数据集上,验证了VGG16、VGG19、ResNet50、InceptionV3、DenseNet121等5种网络的性能,分别达到了98.10%、96.19%、99.05%、97.62%、99.52%的分类准确率。

关键词: 高分辨率遥感影像, 场景分类, 卷积神经网络, 数据增广, 迁移学习

Abstract: Deep learning has achieved remarkable results in the field of computer vision, such as image classification, face recognition, image retrieval and so on. For remote sensing, obtaining a labeled dataset for training DCNN is often a major challenge. In this paper, the use of DCNN for scene classification in high-resolution remote sensing imagery is investigated. In order to overcome the lack of a large number of labeled remote sensing image datasets, two technologieswere combined with DCNN:data augmentation and transfer learning. On the UC Merced Land Use dataset, the performances of 5 networks including VGG16, VGG19, ResNet50, InceptionV3, and DenseNet121 were verified, which achieved classification accuracy of 98.10%, 96.19%, 99.05%, 97.62%, and 99.52%, respectively.

Key words: high-resolution remote sensing imagery, scene classification, convolutional neural network, data augmentation, transfer learning

中图分类号: