[1] 梅安新.遥感理论[M].北京:高等教育出版社,2001. [2] 李德仁,童庆禧,李荣兴,等.高分辨率对地观测的若干前沿科学问题[J].中国科学:地球科学,2012,42(6):805-813. [3] LOWE D G. Distinctive image features fromscale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [4] DALAL N, TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE, 2005:886-893. [5] AVRAMOVIĆ A, RISOJEVIĆ V. Block-based semantic classification of high-resolution multispectral aerial images[J]. Signal, Image and Video Processing, 2016, 10(1):75-84. [6] PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2007:1-8. [7] ZHAO B, ZHONG Y, ZHANG L. A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:73-85. [8] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554. [9] 曲景影,孙显,高鑫.基于CNN模型的高分辨率遥感图像目标识别[J].国外电子测量技术, 2016,35(8):45-50. [10] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [11] 党宇,张继贤,邓喀中,等.基于深度学习AlexNet的遥感影像地表覆盖分类评价研究[J].地球信息科学学报,2017,19(11):130-137. [12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neuralnetworks[C]//Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105. [13] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM, 2010:270-279. [14] PAN S J, YANG Q. A survey on transfer learning[J].IEEE Transactions on knowledge and data engineering, 2009,22(10):1345-1359. [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J].arXiv preprint arXiv:1409.1556, 2014. [16] HE K,ZHANG X,REN S, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE, 2016:770-778. [17] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2016:2818-2826. [18] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2017:4700-4708. [19] YANG Y, NEWSAM S. Spatial pyramid co-occurrence for image classification[C]//Proceedings of 2011 International Conference on Computer Vision.Piscataway,NJ:IEEE,2011:1465-1472. [20] MARMANIS D, DATCU M, ESCH T, et al.Deep learning earth observation classification using ImageNet pretrained networks[J].IEEE Geoscience and Remote Sensing Letters, 2015,13(1):105-109. [21] 张康,黑保琴,李盛阳,等.基于CNN模型的遥感图像复杂场景分类[J].国土资源遥感,2018, 30(4):49-55. [22] 龚希,吴亮,谢忠,等.融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J].光学学报,2019,39(3):19-29. |