测绘通报 ›› 2022, Vol. 0 ›› Issue (7): 1-6.doi: 10.13474/j.cnki.11-2246.2022.0194

• 海洋生态环境监测 •    下一篇

1995—2019年北莉岛人工水产养殖遥感监测

董迪1,2, 魏征1,2, 曾纪胜1,2   

  1. 1. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510300;
    2. 国家海洋局南海规划与环境研究院, 广东 广州 510300
  • 收稿日期:2021-10-11 发布日期:2022-07-28
  • 作者简介:董迪(1990—),女,博士,高级工程师,主要从事海洋遥感应用工作。E-mail:dongdide90@126.com
  • 基金资助:
    广东省自然科学基金(2018A030310032);自然资源部海洋环境探测技术与应用重点实验室自主设立课题(MESTA-2020-C001);自然资源部海洋生态监测与修复技术重点实验室开放研究基金(MEMRT202115)

Remote sensing monitoring of coastal aquaculture ponds in Beili island from 1995 to 2019

DONG Di1,2, WEI Zheng1,2, ZENG Jisheng1,2   

  1. 1. Key Laboratory of Marine Environmental Survey Technology and Application, Guangzhou 510300, China;
    2. South China Sea Institute of Planning and Environmental Research, State Oceanic Administration, Guangzhou 510300, China
  • Received:2021-10-11 Published:2022-07-28

摘要: 有效监测人工水产养殖水面的分布变化对于海洋资源管理、生态环境保护、防灾减灾具有重要意义。本文以Landsat 5、SPOT 5和GF-1卫星影像为数据源,选择广东省北莉岛为研究区,使用线性光谱解混方法获取中等空间分辨率卫星影像的人工水产养殖水面面积,通过面向对象多尺度分割的方法结合支持向量机分类算法提取高空间分辨率卫星影像的人工水产养殖水面分布。研究结果表明,与单一卫星影像相比,综合多源中高空间分辨率卫星数据延长了人工水产养殖水面变化分析可追溯的时间跨度,提高了监测精度;联合光谱解混和面向对象分类方法开展人工水产养殖长时序遥感监测是可行的。近20多年来,北莉岛人工水产养殖水面的面积经历了先增加后缓慢减少的变化过程,1995—2000年平均增速为23.39 hm2/a,2000—2006年平均增速为23.95 hm2/a,2006—2019年平均减少速度为1.96 hm2/a。

关键词: 水产养殖, 面向对象, 光谱解混, 国产高分卫星, 遥感

Abstract: It is of great significance to monitor coastal aquaculture ponds, especially for marine resource management, ecological environment protection, disaster prevention and mitigation. This paper uses Landsat 5, SPOT 5 and GF-1 satellite imagery as data source, and selects Beili island in Guangdong province as the research area. Linear spectral unmixing method is applied to obtain the area of coastal aquaculture ponds based on medium spatial resolution satellite imagery, whereas object-oriented multi-scale segmentation and support vector machine classification algorithm is used to extract coastal aquaculture ponds based on high spatial resolution satellite imagery. The results demonstrate that compared with a single satellite data source, the multi-source medium and high spatial resolution satellite imagery extends the traceable time span of the coastal aquaculture water surface change analysis and improves the monitoring accuracy; the combined spectral unmixing and object-oriented classification methods can be used to monitor coastal aquaculture ponds for long time series. In the past two decades, the area of coastal aquaculture ponds in Beili island first increased and then slowly decreased. The average growth rate of the coastal aquaculture pond area is 23.39 hm2 from 1995 to 2000, 23.95 hm2/a from 2000 to 2006, and -1.96 hm2/a from 2019 to 2006.

Key words: coastal aquaculture, object-orientation, spectral unmixing, domestic high spatial resolution satellite, remote sensing

中图分类号: