测绘通报 ›› 2023, Vol. 0 ›› Issue (12): 13-18.doi: 10.13474/j.cnki.11-2246.2023.0352

• 道路与智能交通驾驶 • 上一篇    下一篇

基于车载LiDAR的特征融合差分的车前道路提取方法

何光明1, 韩士元1,2, 陈月辉1,2, 周劲1,2, 杨君3   

  1. 1. 济南大学山东省网络环境智能计算重点实验室, 山东 济南 250022;
    2. 济南大学人工智能研究院, 山东 济南 250022;
    3. 山东交通学院汽车工程学院, 山东 济南 250023
  • 收稿日期:2023-06-14 发布日期:2024-01-08
  • 通讯作者: 韩士元。E-mail:isehansy@ujn.edu.cn
  • 作者简介:何光明(1996-),男,硕士,研究方向为点云的道路不平度。E-mail:heguangming12138@163.com
  • 基金资助:
    国家自然科学基金(62273164;62373164);山东省自然科学基金重点项目(ZR2020KF006)

Front-of-vehicle road extraction method based on feature fusion difference of vehicle LiDAR

HE Guangming1, HAN Shiyuan1,2, CHEN Yuehui1,2, ZHOU Jin1,2, YANG Jun3   

  1. 1. Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China;
    2. Institute of Artificial Intelligence, University of Jinan, Jinan 250022, China;
    3. School of Automotive Engineering, Shandong Jiaotong University, Jinan 250023, China
  • Received:2023-06-14 Published:2024-01-08

摘要: 为应对行驶中变化的道路环境,划分当前车前道路的可行驶区域,本文提出一种基于多特征融合差分的车前道路检测方法。该算法通过形态学滤波法对原始点云进行地面点云提取,统计归纳地面点云数据,进而界定运算域,在运算域内划分不同纵深的差分元尺寸和起点,在差分元内进行特征参数的融合,形成特征矩阵,求解差分矩阵后再进行阈值滤波,进而实现车前道路点云的提取。本文首先与相关道路点云的提取算法进行对比,表明其性能优良;然后针对所采数据不同纵深的道路提取效果进行对比,证明该算法的有效性。

关键词: 车载LiDAR, 点云, 车前道路提取, 特征融合, 差分

Abstract: In order to cope with the changing road environment during driving and divide the drivable area of the current road in front of the vehicle, this paper proposes a detection method for the road in front of the vehicle based on multi-feature fusion difference. This algorithm extracts the ground point cloud from the original point cloud by morphological filtering method, statistically summarizes the ground point cloud data to define the operation domain, divides the differential element size and starting point of different depths in the operation domain, fuses the characteristic parameters in the differential element, forms a feature matrix, solves the differential matrix, and performs threshold filtering, so as to realize the extraction of the point cloud in front of the vehicle. In this paper the extraction algorithm of the relevant road point cloud is compared to,which highlight its excellent performance and then the road extraction effect of different depths of the collected data is compared to prove the effectiveness of the algorithm.

Key words: in-vehicle LiDAR, point cloud, front-of-vehicle road extraction, feature fusion, differential

中图分类号: