测绘通报 ›› 2023, Vol. 0 ›› Issue (12): 19-24,44.doi: 10.13474/j.cnki.11-2246.2023.0353

• 道路与智能交通驾驶 • 上一篇    

基于图卷积神经网络的道路网匹配

齐杰1,2,3, 王中辉1,2,3, 李驿言1,2,3   

  1. 1. 兰州交通大学测绘与地理信息学院, 甘肃 兰州 730070;
    2. 地理国情监测技术应用国家地方联合工程研究中心, 甘肃 兰州 730070;
    3. 甘肃省地理国情监测工程实验室, 甘肃 兰州 730070
  • 收稿日期:2023-04-10 发布日期:2024-01-08
  • 通讯作者: 王中辉。E-mail:1449041349@qq.com
  • 作者简介:齐杰(1998-),男,硕士,研究方向为空间相似与制图综合。E-mail:1014655296@qq.com
  • 基金资助:
    国家自然科学基金(41861060;41561090);兰州交通大学优秀平台(201806);中央引导地方科技发展资金(YDZX20216200001803)

Road network matching based on graph convolutional neural network

QI Jie1,2,3, WANG Zhonghui1,2,3, LI Yiyan1,2,3   

  1. 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China;
    3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
  • Received:2023-04-10 Published:2024-01-08

摘要: 针对当前道路网匹配方法中权重关系和匹配阈值的确定主观性强、容易产生匹配误差等问题,提出了一种结合图卷积神经网络的道路网匹配方法。首先,选取长度、方向、距离、拓扑4个相似性度量因子作为道路网匹配模型的特征因子;然后,将待匹配道路转化为以道路为节点、道路的连接关系为边的对偶图的图结构,即把道路网匹配问题转化为节点分类的问题;最后,通过搭建图卷积神经网络实现道路网的匹配。试验结果表明,与传统方法相比,该方法的匹配准确率、召回率及F值均得到大幅提升,能够有效解决道路网匹配问题。

关键词: 道路网匹配, 图卷积神经网络, 深度学习

Abstract: The current road network matching methods are highly subjective in determining the weighted relations and matching threshold and prone to matching errors. Therefore, a road network matching method combining graph convolutional neural network is proposed. First, four similarity measure factors of length, direction, distance and topology are selected as the feature factors of the road network matching model. Then the roads to be matched are transformed into a dual graph with roads as nodes and road connection relations as edges, thus to match road network through node classification. Finally, the road network matching is realized by building a graph convolutional neural network. The results show that the matching accuracy, recall rate, and F-value of this method are greatly improved compared with the traditional methods, and it can effectively solve the road network matching problem.

Key words: road network matching, graph convolutional neural network, deep learning

中图分类号: