[1] 郭宁宁. 矢量道路数据的自动匹配与变化检测研究[D]. 南京: 南京师范大学, 2017. [2] 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型[J].测绘科学,2022,47(3):166-173. [3] 郭小菊,陈俊杰. 基于地理本体的同名实体匹配技术研究[J]. 计算机应用与软件,2015,32(2): 66-68. [4] YANG Xue,TANG Luliang,STEWART K,et al. Automatic change detection in lane-level road networks using GPS trajectories[J]. International Journal of Geographical Information Science,2018,32(3): 601-621. [5] 安晓亚,刘平芝,杨云,等. 一种线状要素几何相似性度量方法及其应用[J]. 武汉大学学报(信息科学版),2015,40(9): 1225-1229. [6] 陈玉敏,龚健雅,史文中. 多尺度道路网的距离匹配算法研究[J]. 测绘学报,2007,36(1): 84-90. [7] SAALFELD A. Conflation automated map compilation[J]. International Journal of Geographical Information Systems,1988,2(3): 217-228. [8] 王米琪,艾廷华,晏雄锋,等. 图卷积网络模型识别道路正交网格模式[J]. 武汉大学学报(信息科学版),2020,45(12): 1960-1969. [9] 张康,郑静,沈婕,等. 图卷积网络在道路网选取中的应用[J]. 测绘科学,2021,46(2): 165-170. [10] BRUNA J,ZAREMBA W,SZLAM A,et al. Spectral networks and locally connected networks on graphs[C]//Proceedings of 2013 International Conference on Learning Representations.Scottsdale:[s.n.],2013. [11] DEFFERRARD M,BRESSON X,VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM Press,2016: 3844-3852. [12] KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of 2017 International Commission for Labor Rights(ICLR). Toulon:[s.n.],2017. [13] 余梦娟. 基于Voronoi图的多尺度道路网匹配方法研究[D]. 南昌: 江西师范大学,2017. [14] ZHANG M,SHI W,MENG L.A generic matching algorithm for line networks of different resolutions[C]//Proceedings of 2005 Ica Workshop on Generalisation & Multiple Representation A Corua. Spain: [s.n.],2005. [15] 张猛,吴巧丽,钱海忠. 一种适用于多源道路网自动匹配的通用算法[J]. 测绘科学技术学报,2018,35(1): 82-86. [16] FAN Hongchao,YANG Bisheng,ZIPF A,et al. A polygon-based approach for matching OpenStreetMap Road networks with regional transit authority data[J]. International Journal of Geographical Information Science,2016,30(4): 748-764. |