测绘通报 ›› 2023, Vol. 0 ›› Issue (2): 150-154.doi: 10.13474/j.cnki.11-2246.2023.0056

• 技术交流 • 上一篇    下一篇

遥感影像变化图斑智能化提取平台研发与应用

王本礼1,2,3, 王也1,2,3, 唐先龙1,2,3, 董胜光1,2,3   

  1. 1. 湖南省第二测绘院, 湖南 长沙 410119;
    2. 自然资源湖南省卫星应用技术中心, 湖南 长沙 410009;
    3. 自然资源部南方丘陵区自然资源监测监管重点实验室, 湖南 长沙 410009
  • 收稿日期:2022-09-19 发布日期:2023-03-01
  • 通讯作者: 王也。E-mail:330294549@qq.com
  • 作者简介:王本礼(1969-),男,高级工程师,主要从事国土空间规划与自然资源调查监测研究与工程实践。E-mail:402473755@qq.com
  • 基金资助:
    湖南省自然资源科技计划(2021-05;2020-33)

Research and application an intelligent extraction platform of remote sensing image change detection

WANG Benli1,2,3, WANG Ye1,2,3, TANG Xianlong1,2,3, DONG Shengguang1,2,3   

  1. 1. The Second Survey and Mapping Institute of Hunan Province, Changsha 410119, China;
    2. Natural Resources Hunan Satellite Application Technology Center, Changsha 410009, China;
    3. Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region, Ministry of Natural Resources, Changsha 410009, China
  • Received:2022-09-19 Published:2023-03-01

摘要: 遥感影像变化图斑智能化提取是自然资源动态监测工作的基础。本文简述了遥感影像变化检测技术演进历程及特点,提出同时使用ResNet、U-Net和孪生神经网络3种深度学习算法,设计了集“影像预处理、智能提取、协同筛查”于一体的遥感影像变化图斑智能化提取平台,并详细阐述了各功能模块设计思路。实践表明,融合3种深度学习算法有利于解决单一深度学习网络模型改造难度较大、适用范围有限等难题,有效提升了遥感影像变化检测的查全率,工作效率比目视解译提升超过3倍。研究成果已在湖南省自然资源“1+N”卫星监测工作中广泛应用。

关键词: 深度学习, 变化检测, U-Net, ResNet, 孪生神经网络, 遥感监测, 自然资源监测

Abstract: Intelligent extraction of change detection from remote sensing images is the basis of dynamic monitoring of natural resources. This paper briefly describes the history and characteristics of remote sensing image change detection technology, proposes to use three deep learning algorithms ResNet, U-Net and siamese neural network at the same time, and designs an intelligent extraction platform of remote sensing image change detection that integrates “image preprocessing, intelligent detection, and collaborative screening”, and describes the design ideas of each module in detail. Practice has shown that the integration of three deep learning algorithms is beneficial to solve problems such as difficult transformation and limited scope of application of a single deep learning algorithm, effectively improving the recall rate of remote sensing image change detection, and improving work efficiency compared with visual interpretation more than 3 times. The research results have been widely used in the “1+N” satellite monitoring of natural resources in Hunan Province.

Key words: deep learning, change detection, U-Net, ResNet, siamese neural network, remote sensing monitoring, natural resource monitoring

中图分类号: