[1] 童庆禧,孟庆岩,杨杭. 遥感技术发展历程与未来展望[J]. 城市与减灾,2018(6):2-11. [2] 张艺蔚,陶邦一,毛志华,等. 海洋水色卫星紫外波段的偏振特性分析[J]. 光学学报,2020,40(6):1-11. [3] 方四安,黄小仙,尹达一,等. 海洋溢油模拟目标的紫外反射特性研究[J]. 光谱学与光谱分析,2010,30(3):738-742. [4] 赵冉,胡启后,孙中平,等. 天地一体化遥感监测大气污染技术进展[J]. 环境科学研究,2021,34(1):28-40. [5] 王淑荣,李福田,曲艺. 空间紫外光学遥感技术与发展趋势[J]. 中国光学与应用光学,2009(1):17-22. [6] 张建勇,钟生东. 紫外线技术在军事工程技术中的应用[J]. 光学技术,2000,26(4):308-312. [7] 赵少华,杨晓钰,李正强,等. 臭氧卫星遥感六十年进展[J]. 遥感学报,2022,26(5):817-833. [8] 王丽丽,赵鸿志,张可立. 海洋水色卫星的发展现状及趋势[J]. 航天器工程,2021,30(6):44-51. [9] 童庆禧,张兵,张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报,2016,20(5):689-707. [10] JACQUEMOUD S,BARET F. PROSPECT:a model of leaf optical properties spectra[J]. Remote Sensing of Environment,1990,34(2):75-91. [11] 刘瑶,张文娟,张兵,等. 基于光谱混合的大气吸收通道发射率图像模拟[J]. 遥感技术与应用,2017,32(4):674-682. [12] LIU S,ZHOU J,QIU Y,et al. The FIRST model:spatiotemporal fusion incorrporting spectral autocorrelation[J]. Remote Sensing of Environment,2022,279:113111. [13] 杨倩倩,靳才溢,李同文,等.数据驱动的定量遥感研究进展与挑战[J].遥感学报,2022,26(2):268-285. [14] CHEN Tianqi,GUESTRIN C. XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco:ACM Press,2016:785-794. [15] LIU H,LI Q,BAI Y,et al. Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods[J]. Remote Sensing of Environment,2021,256:112316. [16] MULTI Y,SUN W,CHI Y,et al. Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using Himawari-8 data[J]. Remote Sensing of Environment,2022,273:112971. [17] GREEN R O,PAVRI B E,CHRIEN T G. On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro,Argentina[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1194-1203. [18] TAYLOR R. Interpretation of the correlation coefficient:a basic review[J]. Journal of Diagnostic Medical Sonography,1990,6(1):35-39. [19] PEDREGOSA F,VAROQUAUX G,GRAMFORT A,et al. Scikit-learn:machine learning in python[J]. Journal of machine Learning research,2011,12:2825-2830. [20] BERGSTRA J,KOMER B,ELIASMITH C,et al. Hyperopt:a Python library for model selection and hyperparameter optimization[J]. Computational Science & Discovery,2015,8(1):014008. |