测绘通报 ›› 2023, Vol. 0 ›› Issue (6): 61-67.doi: 10.13474/j.cnki.11-2246.2023.0169

• 学术研究 • 上一篇    下一篇

增强边缘信息的全卷积神经网络遥感影像建筑物变化检测

陈婕, 刘纪平, 徐胜华   

  1. 中国测绘科学研究院, 北京 100036
  • 收稿日期:2022-09-06 发布日期:2023-07-05
  • 作者简介:陈婕(1998-),女,硕士生,研究方向为时空数据地学分析、应急地理信息服务。E-mail:1060477265@qq.com
  • 基金资助:
    国家重点研发计划(2020YFC1511704)

Building change detection in remote sensing images with fully convolutional neural network enhanced edge information

CHEN Jie, LIU Jiping, XU Shenghua   

  1. Chinese Academy of Surveying & Mapping, Beijing 100036, China
  • Received:2022-09-06 Published:2023-07-05

摘要: 针对现有很多深度学习的建筑物变化检测方法未考虑图像的结构特征,导致建筑物边缘像素分割精度低的问题, 本文提出了一种增强边缘信息的遥感影像建筑物变化检测模型。首先采用Canny算法和概率霍夫变换算法提取双时相影像中建筑物的直线边缘特征图作为图像结构特征;然后将双时相影像及其对应的边缘特征图输入到增强边缘信息的全卷积神经网络(FCN)中;最后采用骰子损失和交叉熵损失加权组合函数衡量网络模型。试验表明,增强边缘信息的FCN网络在精度评价和视觉分析上具有一定的优越性。

关键词: 变化检测, 建筑物, 边缘信息提取, FCN, WHU数据集

Abstract: For many existing deep learning building change detection methods, it is difficult to obtain image structure features, which leads to the problem of low segmentation accuracy of building edge pixels. In this paper, a building change detection model based on enhanced edge information in remote sensing images is proposed. Firstly,the Canny algorithm and the probabilistic Hough transform algorithm are used to extract the linear edge feature map of the building in the bitemporal image as the image structure feature. Then the bi-temporal images and their corresponding edge feature maps are input into a fully convolutional neural network (FCN) that enhances edge information. Finally, the weighted combination function of Dice Loss and CrossEntropy Loss is used to measure the network model. Experiments show that the FCN network with enhanced edge information has certain advantages in accuracy evaluation and visual analysis.

Key words: change detection, buildings, edge information extraction, FCN, WHU dataset

中图分类号: