测绘通报 ›› 2024, Vol. 0 ›› Issue (8): 109-114,121.doi: 10.13474/j.cnki.11-2246.2024.0819

• 学术研究 • 上一篇    

三种图像匹配模型在地图匹配中的适用性

侯佳鑫1,2, 车向红2, 刘纪平1,2, 王鸿雁2, 王勇2, 徐胜华2, 罗安2   

  1. 1. 兰州交通大学测绘与地理信息学院, 甘肃 兰州 730070;
    2. 中国测绘科学研究院, 北京 100036
  • 收稿日期:2024-01-29 发布日期:2024-09-03
  • 通讯作者: 刘纪平。E-mail:liujp@casm.ac.cn
  • 作者简介:侯佳鑫(2000—),男,硕士生,主要研究方向为图像处理与应用。E-mail:15244644323@163.com
  • 基金资助:
    国家重点研发计划(2022YFC3005705);国家自然科学基金(42071384);地理信息安全监管(A2401)

Applicability of three image matching models in map image matchings

HOU Jiaxin1,2, CHE Xianghong2, LIU Jiping1,2, WANG Hongyan2, WANG Yong2, XU Shenghua2, LUO An2   

  1. 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100036, China
  • Received:2024-01-29 Published:2024-09-03

摘要: 随着计算机和人工智能等科学技术的快速发展,已出现多种基于深度学习的智能化图像匹配模型,但这些模型大多用于匹配图像纹理特征较为固定的图像(如人物、建筑物和工业器件等),缺乏对图像纹理特征复杂多变的地图图像匹配适用性研究。为此,本文以行政地图、交通地图和专题地图为数据源,基于Superglue、COTR和GlueStick 3种图像匹配深度学习模型,通过融合3类地图和语义分割模型(SAM),从目视检验、匹配精度和匹配效率方面对比分析3种图像匹配模型效果。结果表明:①GlueStick模型在3类地图上边界匹配效果整体最为理想,Superglue次之,而COTR模型匹配效果最差;②基于SAM生成地图分割掩膜图能够减少地图周边干扰要素,进而提升GlueStick和Superglue模型匹配效果,其匹配精度分别提升了47.50%和34.43%;③COTR模型匹配效率最低,GlueStick相比Superglue,在地图原图上匹配效率较低,但在地图分割掩膜图匹配中,两个模型匹配效率相当。本文可为地图内容对比、识别和审查等方面提供重要的智能化技术支撑。

关键词: 地图匹配, 深度学习, Superglue, COTR, GlueStick

Abstract: With the rapid development of science and technology such as computer and artificial intelligence, there are a variety of intelligent image matching models based on deep learning. However, these models are mostly used for matching images with relatively regular texture features (such asportraits, building images,industrial parts, etc), and there is a lack of applicability research in map image matching with complex and diverse texture features. To this end, by taking three types of maps, namely the administrative division map, traffic map and thematic map as data sources, this study compares the map matching performances of the currently popular three image matching models, such as Superglue, COTR and GlueStick, by integrating semantic segmentation model (SAM). The visual matching performance, matching accuracy and matching efficiency results show that:①The boundary matching performance of GlueStick model is the best among the three types of maps, followed by Superglue, while COTR model has the worst matching performance.②Using SAM to extract map segmentation mask images is able to reduce peripheral features of the map, and further improve the matching performance of GlueStick and Superglue models where the accuracy are increased by 47.50% and 34.43%, respectively.③The matching efficiency of the COTR model is the lowest. While the matching efficiency of GlueStick model is lower than Superglue using the original map, their matching efficiency is comparable using the map segmentation masks. This study has important application values for contrast, recognition and review of map content.

Key words: map image matching, deep learning, Superglue, COTR, GlueStick

中图分类号: