测绘通报 ›› 2024, Vol. 0 ›› Issue (8): 84-89.doi: 10.13474/j.cnki.11-2246.2024.0815

• 学术研究 • 上一篇    

基于GF-1多光谱影像的河道碍洪物遥感AI识别模型

顾祝军1, 刘斌2, 朱骊3, 丘仕能2, 任小龙3, 吴家晟1, 肖斌1, 廖广慧1, 姚露露4   

  1. 1. 珠江水利委员会珠江水利科学研究院, 广东 广州 510610;
    2. 广西大藤峡水利枢纽开发有限责任公司, 广西 南宁 530200;
    3. 江苏省水文水资源勘测局无锡分局, 江苏 无锡 214125;
    4. 江苏省 水文水资源勘测局, 江苏 南京 210029
  • 收稿日期:2023-11-14 发布日期:2024-09-03
  • 作者简介:顾祝军(1970—),男,博士,教授,研究方向为AI遥感、水土保持与地理信息系统应用。E-mail:zhujungu@163.com
  • 基金资助:
    国家自然科学基金(32371966);数字孪生大藤峡建设(一期)(DXH2022012);水利遥感AI关键落地技术研究(2022YF014)

AI-based remote sensing identification of waterway obstructions using GF-1 multispectral imagery

GU Zhujun1, LIU Bin2, ZHU Li3, QIU Shineng2, REN Xiaolong3, WU Jiasheng1, XIAO Bin1, LIAO Guanghui1, YAO Lulu4   

  1. 1. Pearl River Water Resources Research Institute, Pearl River Water Resources Commission, Guangzhou 510610, China;
    2. Guangxi Datengxia Hydro Project Development Company Limited, Nanning 530200, China;
    3. Wuxi Branch of Jiangsu Province Hydrology and Water Resources Investigation Bureau, Wuxi 214125, China;
    4. Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing 210029, China
  • Received:2023-11-14 Published:2024-09-03

摘要: 河道碍洪物是洪涝灾害的重要影响因素,对其进行高效精准监管需引起高度重视。传统的人工巡查难以满足高效精准的应用需求,因此结合人工智能(AI)的遥感技术应用是必经之路。然而诸多的AI模型在遥感应用中的表现尚不清晰,亟待深入探讨。本文以广西大藤峡库区为例,研究河道碍洪物遥感AI识别模型构建方法。基于GF-1遥感影像,构建碍洪物训练样本集,以ResNet101为核心网络,采用当前主流的6种语义分割模型,包括PSPNet、PAN、MANet、FPN、DeepLabV3+和UNet++,进行碍洪物识别模型训练,进而评估其精度和效率。结果表明:①利用ResNet101作为骨干网络的深度学习模型,在河道碍洪物识别中表现优异,所有模型的F1得分均大于0.70,交并比(IoU)均大于0.58。其中,结合洞卷积和全局池化技术的DeepLabV3+模型的F1得分为0.82,IoU为0.72,体现了其在捕捉上下文信息和微观特征方面的显著优势。②PSPNet在参数量较低的情况下表现出较高的处理效率和精度,每批次能处理8个样本,帧率高达10.49。综上,DeepLabV3+在精确识别和轮廓描绘方面的表现尤为突出,而PSPNet在大规模数据处理上显示出巨大潜力。研究结果可为AI遥感模型构建提供参考,并为河道安全监管提供技术支撑。

关键词: GF-1, 多光谱, 碍洪物, 人工智能, 识别模型

Abstract: The obstructions in waterways are significant factors affecting flood disasters, thus their efficient and precise management has garnered widespread attention. Traditional manual inspections cannot meet the needs for efficient and precise applications; the integration of artificial intelligence (AI) with remote sensing technology applications is an inevitable path. However, the performance of many AI models in remote sensing applications is not yet clear and urgently needs further investigation. This research takes the Datengxia reservoir area in Guangxi as an example to study the construction methods of AI recognition models for obstructions in waterways using remote sensing. Based on GF-1 remote sensing imagery, an obstructions in waterways training dataset is constructed. Using ResNet101 as the core Network, six current mainstream semantic segmentation models are adopted, including PSPNet, PAN, MANet, FPN, DeepLabV3+, and UNet++. The models are trained for the identification of obstructions in waterways to further evaluate their precision and efficiency. Key findings include: ①Deep learning models utilize ResNet101 as the backbone Network shows excellent performance in identifying obstructions in waterways with all models achieving an F1 score above 0.70 and IoU above 0.58. Among them, the DeepLabV3+ model, which combines atrous convolution and global pooling techniques, achieves an F1 score of 0.82 and an IoU of 0.72, demonstrating significant advantages in capturing contextual information and micro-features. ②PSPNet, despite having a lower number of parameters, exhibits high processing efficiency and accuracy, capable of handling 8 samples per batch with a frame rate of 10.49. In summary, DeepLabV3+ stands out in precise identification and contour delineation, while PSPNet shows great potential in large-scale data processing. The study results can provide a reference for constructing AI remote sensing models and offer technical support for waterway safety monitoring.

Key words: GF-1, multispectral, flood obstruction objects, artificial intelligence, recognition model

中图分类号: