测绘通报 ›› 2017, Vol. 0 ›› Issue (12): 43-47.doi: 10.13474/j.cnki.11-2246.2017.0376

• 学术研究 • 上一篇    下一篇

基于S3VM模型的高光谱遥感影像分类

魏立飞1,2, 俸秀强1, 李丹丹3, 牟紫薇1,2   

  1. 1. 湖北大学资源环境学院, 湖北 武汉 430062;
    2. 区域开发与环境响应湖北省重点实验室, 湖北 武汉 430062;
    3. 农业部农业信息技术重点实验室, 北京 100081
  • 收稿日期:2017-03-15 修回日期:2017-05-24 出版日期:2017-12-25 发布日期:2018-01-05
  • 作者简介:魏立飞(1979-),男,博士生,讲师,主要研究方向为城市遥感及遥感影像智能化处理。E-mail:weilifeihb@163.com
  • 基金资助:
    国家自然科学基金(61201341;41371344);干旱气象科学研究基金(IAM201512);数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放研究基金(GCWD201407)

Classification of Hyperspectral Remote Sensing Image Based on S3VM Model

WEI Lifei1,2, FENG Xiuqiang1, LI Dandan3, MOU Ziwei1,2   

  1. 1. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
    2. Hubei Key Laboratory of Regional Development and Environmental Response, Wuhan 430062, China;
    3. Key Laboratory of Agri-informatics, Ministry of Agriculture, P. R. China, Beijing 100081, China
  • Received:2017-03-15 Revised:2017-05-24 Online:2017-12-25 Published:2018-01-05

摘要: 针对传统的高光谱遥感影像分类受限于训练样本的个数,难以取得较好分类结果的不足,提出了一种基于聚类核的半监督支持向量机(S3VM)模型的高光谱遥感影像分类方法。该算法在半监督支持向量机的体系上加入未标记样本来辅助构建核矩阵,从而获得更优异的分类器,在小样本的基础上提高分类精度。试验结果表明,本文方法的分类精度好于传统方法,并且稳定性良好。

关键词: 高光谱遥感影像, S3VM模型, 未标记样本, 半监督分类

Abstract: The traditional hyperspectral remote sensing image classification is limited by the number of training samples,so it is difficult to obtain the better classification results.This paper proposes a hyperspectral remote sensing image classification method based on semi-supervised support vector machine of clustering kernel.The method constructs a kernel matrix to obtain more excellent classifier by semi-supervised support vector machine and unlabeled sample,and improves classification accuracy based on small sample.The experimental results show that the classification accuracy of this method proposed in this paper is better than the traditional method,and has good stability.

Key words: hyperspectral remote sensing image, S3VM model, unlabeled sample, semi-supervised classification

中图分类号: