测绘通报 ›› 2019, Vol. 0 ›› Issue (4): 38-42.doi: 10.13474/j.cnki.11-2246.2019.0109

• 学术研究 • 上一篇    下一篇

结合面向对象和深度特征的高分影像树种分类

滕文秀1, 王妮2,3, 施慧慧2, 许振宇1   

  1. 1. 南京林业大学林学院, 江苏 南京 210037;
    2. 滁州学院地理信息与旅游学院, 安徽 滁州 239000;
    3. 安徽省地理信息智能感知与服务工程实验室, 安徽 滁州 239000
  • 收稿日期:2018-10-12 出版日期:2019-04-25 发布日期:2019-05-07
  • 通讯作者: 王妮。E-mail:wnstrive@163.com E-mail:wnstrive@163.com
  • 作者简介:滕文秀(1994-),男,硕士生,主要从事遥感与地理信息系统研究。E-mail:wenxiu_teng@163.com
  • 基金资助:

    国家自然科学基金项目(41601455);安徽高校省级自然科学研究重点项目(KJ2016A531)

Tree species classification of high resolution image combining with object-oriented and deep feature

TENG Wenxiu1, WANG Ni2,3, SHI Huihui2, XU Zhenyu1   

  1. 1. College of Forest, Nanjing Forestry University, Nanjing 210037, China;
    2. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China;
    3. Anhui Engineering Laboratory of Geographical Information Intelligent Sensor and Service, Chuzhou 239000, China
  • Received:2018-10-12 Online:2019-04-25 Published:2019-05-07

摘要:

针对传统手工提取特征方法需要专业领域知识,提取高质量特征困难的问题,将深度迁移学习技术引入到高分影像树种分类中,提出一种结合面向对象和深度特征的高分影像树种分类方法。为了获取树种的精确边界,该方法首先利用多尺度分割技术分割整幅遥感影像,并选择训练样本作为深度卷积神经网络的输入。为了避免样本数量少导致过拟合问题,采用迁移学习方法,使用ImageNet上训练的VGG16模型参数初始化深度卷积神经网络,并利用全局平局池化压缩参数,在网络最后添加1024个节点的全连接层和7个节点的Softmax分类器,利用反向传播和Adam优化算法训练网络。最后分类整幅遥感影像,生成树种专题地图。以安徽省滁州市的皇甫山国家森林公园为研究区,QuickBird高分影像作为数据源,采用本文方法进行树种分类。试验结果表明,本文方法树种分类总体精度和Kappa系数分别为78.98%和0.685 0,在保证树种精度的同时实现了端到端的树种分类。

关键词: 高分影像, 树种分类, 卷积神经网络, 迁移学习, 多尺度分割

Abstract:

A tree species classification of high resolution image combining with object-oriented and deep feature is proposed to overcome the problem that traditional manual extraction features need professional knowledge and difficult to extract high quality features.In order to obtain the precise boundary of tree species, the method firstly uses multiscale segmentation technology to segment the whole remote sensing image, and selects the training samples as the input of the deep convolution neural network.In order to avoid over-fitting caused by a small number of samples, transfer learning method is used to initialize the deep convolution neural network with the parameters of VGG16 model trained on ImageNet. Using global average pooling compression parameters, a 1024 nodes fully connected layer and 7 nodes Softmax classifier are added at the end of the network. The network is trained by back propagation and Adam optimization algorithm.Finally, the whole remote sensing image is classified and the tree thematic map is generated. The test site is located in the Huangfu Mountain National Forest Park in Anhui province.QuickBird high resolution image is the data source.The results show that the overall accuracy and Kappa coefficient of this method are 78.98% and 0.6850 respectively, which can ensure the accuracy of tree species and achieve end-to-end tree species classification.

Key words: high resolution image, tree species classification, convolutional neural network, transfer learning, multiscale segmentation

中图分类号: