测绘通报 ›› 2023, Vol. 0 ›› Issue (5): 72-77.doi: 10.13474/j.cnki.11-2246.2023.0139

• 学术研究 • 上一篇    下一篇

矿山环境三维激光雷达SLAM算法建图与定位

张清宇, 崔丽珍, 杜秀铎, 马宝良   

  1. 内蒙古科技大学信息工程学院, 内蒙古 包头 014010
  • 收稿日期:2022-09-13 修回日期:2023-02-24 发布日期:2023-05-31
  • 作者简介:张清宇(1997-),男,硕士生,研究方向为三维激光SLAM定位。E-mail:374909253@qq.com
  • 基金资助:
    国家自然科学基金(61761038;62261042);内蒙古自然科学基金(2020MS06027)

Mapping and positioning of 3D LiDAR SLAM algorithm in mine environment

ZHANG Qingyu, CUI Lizhen, DU Xiuduo, MA Baoliang   

  1. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
  • Received:2022-09-13 Revised:2023-02-24 Published:2023-05-31

摘要: 针对矿山地形测绘中存在的建图失真和累计误差大等问题,本文基于三维激光雷达的同步定位与地图构建算法。首先对激光雷达(LiDAR)和惯性测量单元(IMU)进行内外参数标定,以解决无法建图的问题。然后通过巡检机器人采集3组场景(街区道路、矿山斜坡、采矿区)的数据集,对主流的ALOAM、LeGO-LOAM和LIO-SAM等算法进行对比,并利用GNSS数据作为轨迹真值。试验表明,在矿山环境多传感器融合算法LIO-SAM具有更好的稳健性和定位精度,轨迹绝对位置误差较ALOAM和LeGO-LOAM分别降低了21.53%和60.10%。此外,特征提取部分引入强度特征的IALIO算法误差较LIO-SAM降低了20.16%。

关键词: 矿山, SLAM, 巡检机器人, 激光雷达, IMU, 特征提取

Abstract: Aiming at the problems of mapping distortion and large cumulative error in mine terrain mapping, a 3D LiDAR-based synchronous positioning and map construction algorithm is studied. Firstly, the internal and external parameters of the LiDAR and IMU are calibrated to solve the problem that maps cannot be built. Then, the inspection robot collects data sets of three sets of scenes (block roads, mine slopes, and mining areas), compares the mainstream algorithms such as ALOAM, LeGO-LOAM, and LIO-SAM, and uses GNSS data as the true trajectory value. The test shows that the multi-sensor fusion algorithm LIO-SAM has better robustness and positioning accuracy in the mine environment, and the absolute position error of the trajectory is reduced by 21.53% and 60.10% compared with ALOAM and LeGO-LOAM, respectively. In addition, the feature extraction part introduces strength features so as to error of the IALIO algorithm is 20.16% lower than that of LIO-SAM.

Key words: mine, SLAM, inspection robot, LiDAR, IMU, feature extraction

中图分类号: