测绘通报 ›› 2023, Vol. 0 ›› Issue (6): 150-154.doi: 10.13474/j.cnki.11-2246.2023.0185

• 技术交流 • 上一篇    下一篇

黄河下游藕节形河道游荡趋势演变遥感分析

范忻1, 丁来中1,2, 李莹1, 王文杰1, 程明1, 宋会传1, 高爽1, 耿丽艳1, 李春意2   

  1. 1. 河南省地质矿产勘查开发局测绘地理信息院, 河南 郑州 450006;
    2. 河南理工大学测绘与国土 信息工程学院, 河南 焦作 454000
  • 收稿日期:2022-08-31 发布日期:2023-07-05
  • 通讯作者: 程明。E-mail:2576101251@qq.com
  • 作者简介:范忻(1988-),女,硕士,工程师,主要研究方向为水环境遥感调查。E-mail:1043970389@qq.com
  • 基金资助:
    河南省科技攻关项目(212102310404);国家自然科学基金(41671507;U1810203);河南省青年骨干教师项目(2019GGJS059);河南省2021年地矿局局管地质科研项目(豫地矿科研[2021]Z-37)

Remote sensing analysis of the evolution of wandering trends in the lower Yellow River root-shaped channel

FAN Xin1, DING Laizhong1,2, LI Ying1, WANG Wenjie1, CHENG Ming1, SONG Huichuan1, GAO Shuang1, GENG Liyan1, LI Chunyi2   

  1. 1. Institute of Surveying Mapping and Geoinformation, Zhengzhou 450006, China;
    2. School of Surveying and Landing Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2022-08-31 Published:2023-07-05

摘要: 河道游荡是黄河下游发生自然灾害的主要诱因,分析其游荡规律对保护下游滩区居民的生产生活具有重要意义。针对黄河下游河道游荡问题,本文采用多源国产卫星长时序数列,提出了一种主成分分析-支持向量机(PCA-SVM)黄河河道提取方法,解译了黄河濮阳段2013—2022年的河道信息,并以藕节形河道为例分析了其游荡趋势。结果表明,PCA-SVM 方法提取的黄河河道完整,沙洲清晰,显著改善了河道与湿地、滩涂分类混淆等问题,解译精度为 84.17%,Kappa系数为 0.613,精度明显高于最大似然分类法、最小距离分类法和 SVM法。对2013—2022年黄河河道游荡趋势分析可知,研究区内藕节形河道游荡趋势明显,河道主槽已从左岸迁移至右岸,至2022年8月仍存在向右游荡迁移趋势,右岸滩区居民点和农田侵蚀加剧,易引发险工出险,导致洪涝灾害。

关键词: 黄河下游, 游荡河段, 遥感, PCA-SVM, 洪泛灾害

Abstract: River wading is a major cause of natural disasters in the lower reaches of the Yellow River, and the analysis of its wading pattern is of great significance for the protection of settlements and farmlands in the downstream beach areas. Aiming at the river loitering problem in the lower Yellow River, this paper proposes a PCA-SVM extraction method for the Yellow River channel by using the multi-source long time series of domestic satellites, and interpretes the river channel information of the Puyang section of the Yellow River from 2013 to 2022, and takes the Lotus node channel as an example to analyze its loitering trend. The results show that the Yellow River channel extracted by PCA-SVM method is complete and the sand bar is clear, which significantly improves the classification confusion of the river channel, wetland and tidal flat, and the interpretation accuracy is 84.17%. The Kappa coefficient is 0.613, and the accuracy is significantly higher than that of maximum likelihood classification, minimum distance classification and SVM. Through the analysis of the loitering trend of the Yellow River from 2013 to 2022, it can be seen that the loitering trend of the lotus node channel in the study area is obvious, and the main channel has migrated from the left bank to the right side, and there is still a loitering and migration trend to the right by August 2022. The erosion of residential areas and farmland in the right bank beach area is intensified, which is easy to cause dangerous workers and lead to flood disasters.

Key words: lower Yellow River, wandering reaches, remote sensing, PCA-SVM, flood hazards

中图分类号: