测绘通报 ›› 2023, Vol. 0 ›› Issue (12): 31-37.doi: 10.13474/j.cnki.11-2246.2023.0355

• 学术研究 • 上一篇    

多尺度融合卷积神经网络支持下的SAR影像变化检测

段玉1,2, 刘善伟1,2, 万剑华1,2, MUHAMMAD Yasir1,2, 郑爽3   

  1. 1. 中国石油大学(华东)海洋与空间信息学院, 山东 青岛 266580;
    2. 自然资源部海上丝绸之路海洋资源与环境网络观测技术创新中心, 山东 青岛 266580;
    3. 山东财经大学公共外语教学部, 山东 济南 250014
  • 收稿日期:2023-03-21 发布日期:2024-01-08
  • 作者简介:段玉(1997-),女,硕士生,主要研究方向为SAR变化检测。E-mail:S20160046@upc.edu.cn
  • 基金资助:
    国家自然科学基金(41776182)

SAR image change detection based on multi-scale fusion convolutional neural network

DUAN Yu1,2, LIU Shanwei1,2, WAN Jianhua1,2, MUHAMMAD Yasir1,2, ZHENG Shuang3   

  1. 1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China;
    2. Technology Innovation Center for Maritime Silk Road Marine Resources and Environment Networked Observation, Ministry of Natural Resources, Qingdao 266580, China;
    3. School of Foreign Language Education, Shandong University of Finance and Economic, Jinan 250014, China
  • Received:2023-03-21 Published:2024-01-08

摘要: 相干斑噪声的存在影响着合成孔径雷达(SAR)影像识别变化信息的能力。为了提高变化检测的准确性,必须充分考虑相干斑噪声的影响。本文提出了一种新的变化检测方法,利用联系上下文显著性提取方法,从差异图中提取潜在变化区域和背景信息,在保留图像主要纹理细节的同时去除背景噪声。针对当前变化检测方法特征表达不足的问题,设计了一种多尺度通道注意力模块squeeze,expand and excitation(SEE),在获取多感受野信息的同时强调重要信息,不至于产生信息冗余。在此基础上,提出了一种多尺度融合卷积神经网络——SEENet。SEENet将3个SEE模块残差连接,以实现信息的多级利用。通过在4个SAR真实数据集上的试验,验证了该方法的有效性。

关键词: 多尺度, SAR影像, 变化检测, SEENet

Abstract: The presence of speckle noise significantly affects the capability of synthetic aperture radar (SAR) image to recognize changing information. In order to enhance the accuracy of change detection, the influence of speckle noise must be adequately addressed. This study introduces a novel approach for change detection. Firstly, a context-aware saliency extraction method is employed to extract potential change regions and background information from the difference image. This process retains the main textural details of the image while removing background noise. A multi-scale channel attention module, the squeeze, expand, and excitation (SEE) module, is designed to address the issue of inadequate feature representation in current change detection methods. This module captures multi-scale information while emphasizing crucial details without introducing information redundancy.Building upon this foundation, a multi-scale fusion convolutional neural network called the squeeze, expand, and excitation network (SEENet) is proposed. SEENet connects three SEE modules through residual connections to achieve multi-level information utilization. Through experimentation on four real SAR datasets, the effectiveness of this method is validated.

Key words: multi-scale, SAR image, change detection, SEENet

中图分类号: