测绘通报 ›› 2023, Vol. 0 ›› Issue (11): 132-138.doi: 10.13474/j.cnki.11-2246.2023.0341

• 技术交流 • 上一篇    下一篇

基于遥感影像的生产建设项目扰动图斑人机协同智能提取方法

王松伦, 马晓楠, 潘子轩   

  1. 河南省水利勘测有限公司, 河南 郑州 450000
  • 收稿日期:2023-07-17 出版日期:2023-11-25 发布日期:2023-12-07
  • 通讯作者: 马晓楠。E-mail:maxiaonan_0807@163.com
  • 作者简介:王松伦(1981—),男,高级工程师,研究方向为水利信息化、遥感应用。E-mail:18430046@qq.com
  • 基金资助:
    河南省水利科技攻关项目(GG202010;GG202215)

Human-machine collaborative intelligent extraction method of production and construction projectdisturbed patches based on remote sensing image

WANG Songlun, MA Xiaonan, PAN Zixuan   

  1. Henan Water Conservancy Survey Co., Ltd., Zhengzhou 450000, China
  • Received:2023-07-17 Online:2023-11-25 Published:2023-12-07

摘要: 水土保持生产建设项目扰动图斑解译工作多以人工目视解译方法实现,在实际工作中,存在效率低、成本高、主观性强等问题。本文提出了 “智能提取模型+遥感监管协作平台”的生产建设项目扰动图斑人机协同智能提取框架,通过本底数据要素标注、数据增强等手段构建变化检测数据集,采用改进的U-Net++模型开展生产建设项目扰动图斑智能提取试验。结果表明,模型平均准确率为79.59%,面积召回率为80.90%。针对检测模型容易误提取伪变化和云雾遮挡区域,以及存在图斑破碎、轮廓不规整等问题,在自动提取成果的基础上构建了分布式并行协同解译平台,对扰动图斑进行增、删、补、检,并将最终结果作为新样本反馈给模型,进一步提升模型性能,形成样本与模型间的良性循环,提高了实际工作效率。

关键词: 生产建设项目, 变化检测, U-Net++, 人机协同

Abstract: Disturbed patch interpretation of production and construction projects in soil and water conservation is mostly realized by artificial visual interpretation of remote sensing images. In the actual work process, there are some problems such as low efficiency, high cost and strong subjectivity.This paper proposes a human-machine collaborative intelligent extraction framework for production and construction project disturbance patches, which combines intelligent extraction model with remote sensing supervision cooperation platform. The change detection dataset is constructed by elements annotation, data enhancement and other means. And then, the improved U-Net++ model is used to carry out the intelligent extraction of production and construction project disturbance patches. The results show that the average accuracy of the model is 79.59%, and the area recall rate of the model is 80.90%.In addition, aiming at the problems that the model easily extracts the pseudo-variation or cloud obscured region incorrectly, patch fragmentation, or irregular contour boundary, a distributed parallel collaborative interpretation platform is built on the basis of automatic extraction results. The platform can realize the functions of adding, deleting, creating, quality inspection, and so on.The final results are fed back to the model as new samples to further improve the performance of the model. Thus form a virtuous cycle between the sample and the model, and improve the actual work efficiency.

Key words: production and construction projects, change detection, U-Net++, human-machine collaboration

中图分类号: