[1] JIANG Xingyu,MA Jiayi,XIAO Guobao,et al. A review of multimodal image matching: methods and applications[J]. Information Fusion,2021,73: 22-71. [2] 王铮,刘纪平,车向红,等. 基于卷积神经网络的地图相似度匹配方法研究[J]. 测绘科学,2022,47(7): 169-175. [3] 白又达,刘纪平,黄龙,等. 面向地图图片识别的两种卷积神经网络分析[J]. 测绘科学,2021,46(11): 126-134. [4] 黄龙. 一种快速挖掘互联网问题地图图片的方法[J]. 测绘与空间地理信息,2017,40(11): 92-93. [5] 樊凡渊. 对地图的监管不能仅限于纸质版[N]. 中国新闻出版广电报,2019-02-28(3). [6] 杜凯旋,王亮,王勇,等. 主动学习和卷积神经网络的地图图片识别方法[J]. 测绘科学,2020,45(7): 139-147. [7] MA Jiayi,JIANG Xingyu,FAN Aoxiang,et al. Image matching from handcrafted to deep features: a survey[J]. International Journal of Computer Vision,2021,129(1): 23-79. [8] WELLS W M,VIOLA P,ATSUMI H,et al.Multi-modal volume registration by maximization of mutual information[J].Medical Image Analysis,1996,1(1):35-51. [9] 舒军,李灵,邓明舟. 基于NCC的PCB图像配准算法研究[J]. 湖北工业大学学报,2022,37(2): 48-54. [10] ROSTEN E,PORTER R,DRUMMOND T. Faster and better: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(1): 105-119. [11] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2): 91-110. [12] MATAS J,CHUM O,URBAN M,et al. Robust wide-baseline stereo from maximally stable extremal regions[J].Image and Vision Computing,2004,22(10):761-767. [13] 陈建新,唐丽玉. 一种SIFT-FREAK图像匹配算法[J]. 测绘与空间地理信息,2023,46(6): 32-35. [14] 杜玉龙,李建增,张岩,等. 基于MSER与SIFT融合的多通道图像匹配算法研究[J]. 军械工程学院学报,2016,28(1): 52-58. [15] SARLIN P E,DETONE D,MALISIEWICZ T,et al. Superglue: learning feature matching with graph neural networks[J].Computer Science,2019:208291327. [16] PAUTRAT R,SUÁREZ I,YU Yifan,et al. GlueStick: robust image matching by sticking points and lines together[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris: IEEE,2023: 9706-9716. [17] CAO Xiaohuan,YANG Jianhuan,WANG Li,et al. Deep learning based inter-modality image registration supervised by intra-modality similarity[M]//SHI Yinghuan,SUK H I,LIU Mingxia,etc. Machine Learning in Medical Imaging. Cham: Springer International Publishing,2018: 55-63. [18] MAHAPATRA D,ANTONY B,SEDAI Suman,et al. Deformable medical image registration using generative adversarial networks[C]//Proceedings of 2018 IEEE International Symposium on Biomedical Imaging. Washington,DC: IEEE,2018: 1449-1453. [19] JIANG Wei,TRULLS E,HOSANG J,et al. COTR: correspondence transformer for matching across images[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal,QC,Canada: IEEE,2021: 6207-6217. [20] KIRILLOV A,MINTUN E,RAVI N,et al. Segment anything[J].Computer Science,2023:257952310. [21] HUANG Y,YANG X,LIU L,et al. Segment anything model for medical images?[J]. Med Image Anal,2024,92: 103061. [22] JI G P,FAN D P,XU P,et al. SAM struggles in concealed scenes--empirical study on “segment anything”[J]. Computer Science,2023:258079139. [23] TANG Lü,XIAO Haoke,LI Bo. Can SAM segment anything? when SAM meets camouflaged object detection[J]. Computer Science,2023:258048579. |